分析 化簡可得f(x)=sin(2x-$\frac{π}{6}$),由三角函數(shù)的性質(zhì)逐個選項(xiàng)驗(yàn)證可得.
解答 解:化簡可得f(x)=sin2x+$\sqrt{3}sinxcosx-\frac{1}{2}$
=$\frac{1}{2}$(1-cos2x)+$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$
=sin(2x-$\frac{π}{6}$)
驗(yàn)證可得①最小正周期為T=$\frac{2π}{2}$=π,正確;
把x=$\frac{π}{3}$代入可得y=sin($\frac{2π}{3}$-$\frac{π}{6}$)=1為最大值,
故②圖象關(guān)于x=$\frac{π}{3}$對稱,正確;
把x=$\frac{7π}{12}$代入可得y=sin($\frac{7π}{6}$-$\frac{π}{6}$)=0,
故③圖象關(guān)于點(diǎn)$(\frac{7π}{12},0)$成中心對稱,正確;
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$可得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z,
故函數(shù)在區(qū)間$[-\frac{π}{2},\frac{π}{4}]$上不單調(diào),
故④在區(qū)間$[-\frac{π}{2},\frac{π}{4}]$上單調(diào)遞增,錯誤.
故答案為:①②③
點(diǎn)評 本題考查三角函數(shù)的圖象和性質(zhì),屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m<n<p. | B. | m<p<n | C. | p<m<n | D. | p<n<m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | 12 | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A∩B=B | B. | A∪B=A | C. | A?B | D. | ∁RA=B |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -3 | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{-1+i}{2}$ | B. | $\frac{-1-i}{2}$ | C. | $\frac{1-i}{2}$ | D. | $\frac{1+i}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com