【題目】有甲、乙兩個班級進(jìn)行數(shù)學(xué)考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的2×2列聯(lián)表.已知從全部210人中隨機(jī)抽取1人為優(yōu)秀的概率為.
(1)請完成上面的2×2列聯(lián)表,并判斷若按99%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)”;
(2)從全部210人中有放回地抽取3次,每次抽取1人,記被抽取的3人中的優(yōu)秀人數(shù)為ξ,若每次抽取的結(jié)果是相互獨(dú)立的,求ξ的分布列及數(shù)學(xué)期望E(ξ).
P(K2≥k0) | 0.05 | 0.01 |
k0 | 3.841 | 6.635 |
附:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且g(x)=f(x)-mx-m在(-1,1]內(nèi)有且僅有兩個不同的零點,則實數(shù)m的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點P在直線l上,過點P作圓M的切線PA,PB,切點為A,B.
(Ⅰ)若∠APB=60°,試求點P的坐標(biāo);
(Ⅱ)若P點的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點,當(dāng)CD=時,求直線CD的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), ,且函數(shù)的圖象關(guān)于直線對稱。
(1)求函數(shù)在區(qū)間上最大值;
(2)設(shè),不等式在上恒成立,求實數(shù)的取值范圍;
(3)設(shè)有唯一零點,求實數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù),
(1)若函數(shù)為奇函數(shù),求的值;
(2)若函數(shù)在上有意義,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-2|x|-1,-3≤x≤3.
(1)證明:f(x)是偶函數(shù);
(2)指出函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, 是自然對數(shù)的底數(shù)).
(1)當(dāng)時,求曲線在點處的切線方程;
(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在各項都不相等的等差數(shù)列{an}中,a1,a2是關(guān)于x的方程x2-7a4x+18a3=0的兩個實根.
(1) 試判斷-22是否在數(shù)列{an}中;
(2) 求數(shù)列{an}的前n項和Sn的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com