過點(diǎn)(,-2)的直線l經(jīng)過圓x2+y2-2y=0的圓心,則直線l的傾斜角大小為

[  ]

A.30°

B.60°

C.150°

D.120°

答案:D
解析:

圓x2+y2-2y=0的圓心為(0,1),過點(diǎn)(,-2)與(0,1)的直線的斜率k==-,∴直線l的傾斜角大小為120°,故應(yīng)選D.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C:y2=4x,過點(diǎn)P(
52
,1)
的直線l與拋物線C交點(diǎn)A、B兩點(diǎn),且點(diǎn)P為弦AB的中點(diǎn).
( I)求直線l的方程;
( II)若過點(diǎn)P斜率為-2的直線m與拋物線C交點(diǎn)A1、B1兩點(diǎn),求證:PA•PB=PA1•PB1;
( III)過線段AB上任意一點(diǎn)P1(不含端點(diǎn)A、B)分別做斜率為k1、k2(k1≠k2)的直線l1,l2,若l1交拋物線C于A1、B1兩點(diǎn),l2交拋物線C于A2,B2兩點(diǎn),且:P1A1•P1B1=P1A2•P1B2,試求k1+k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)過點(diǎn)P(3,
2
)
的直線l,與x軸交于點(diǎn)F(2,0),如果一個橢圓經(jīng)過點(diǎn)P,且以點(diǎn)F為它的一個焦點(diǎn).
(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)中求過點(diǎn)F(2,0)的弦AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(-1,-2)的直線被圓截得的弦長為,則直線的斜率為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省高二5月教學(xué)質(zhì)量檢測理科數(shù)學(xué)卷(解析版) 題型:解答題

動圓M過定點(diǎn)A(-,0),且與定圓A´:(x-)2+y2=12相切.

(1)求動圓圓心M的軌跡C的方程;

(2)過點(diǎn)P(0,2)的直線l與軌跡C交于不同的兩點(diǎn)E、F,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省德州市高三12月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

動圓M過定點(diǎn)A(-,0),且與定圓A´:(x)2y2=12相切.

(1)求動圓圓心M的軌跡C的方程;

(2)過點(diǎn)P(0,2)的直線l與軌跡C交于不同的兩點(diǎn)E、F,求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案