在棱長為的正方體中,點分別是棱,的中點,則點到平面的距離是(       ).
A.B.C.D.
D
解:設所求距離為h.
因為:B1E=B1F=C1F=  ,EF=
而E到平面B1C1F的距離EB=1,利用等體積法可知點到平面的距離,選D
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分9分)  如圖,四棱錐S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,點E是SD上的點,且DE=a(0<≦1).   

(Ⅰ)求證:對任意的(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小為600C,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,兩矩形ABCD、ABEF所在平面互相垂直,DE與平面ABCD及平面所成角分別為30°、45°,M、N分別為DE與DB的中點,且MN=1.
(I) 求證:MN⊥平面ABCD

(II) 求線段AB的長;
(III)求二面角A-DE-B的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是直角梯形,,平面,點的中點,且.

(1)求四棱錐的體積;
(2)求證:∥平面;
(3)求直線和平面所成的角是正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

兩個不重合的平面可以把空間分成________部分.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

三角形的兩邊長分別為4,5,它們夾角的余弦是方程2x2+3x-2=0的根,則第三邊長是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直二面角A—BD—C,平面ABD⊥平面BCD,若其中給定 AB="AD" =2,,,BC⊥CD .
(Ⅰ)求AC與平面BCD所成的角;
(Ⅱ)求點A到BC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

“三角形的三條中線交于一點,且這一點到頂點的距離等于它到對邊中點距離的2倍”.試類比:四面體的四條中線(頂點到對面三角形重心的連線段)交于一點,且這一點到頂點的距離等于它到對面重心距離的     倍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

mn是兩條不同的直線,是三個不同的平面,給出下列四個命題:
①若,則   ②若,,則
③若,則  ④若,,則
其中,正確命題的序號是______________________.

查看答案和解析>>

同步練習冊答案