分析 由已知得$\left\{\begin{array}{l}{x=\frac{1}{3}{x}^{'}}\\{y=2{y}^{'}}\end{array}\right.$,代入雙曲線C得到曲線C′的標準方程,由此能求出曲線C′的焦點坐標.
解答 解:∵$\left\{\begin{array}{l}{x′=3x}\\{2y′=y}\end{array}\right.$,∴$\left\{\begin{array}{l}{x=\frac{1}{3}{x}^{'}}\\{y=2{y}^{'}}\end{array}\right.$,
代入雙曲線C:x2-$\frac{{y}^{2}}{64}$=1,得$\frac{{{x}^{'}}^{2}}{9}$-$\frac{{{y}^{'}}^{2}}{16}$=1.
∴a=3,b=4,c=$\sqrt{9+16}$=5,
∴曲線C′的焦點坐標為F1(-5,0),F(xiàn)2(5,0).
點評 本題考查伸縮變換的應(yīng)用,是基礎(chǔ)題,解題時要認真審題,注意雙曲線的簡單性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1] | B. | (0,$\frac{\sqrt{6}}{2}$] | C. | (0,$\sqrt{2}$] | D. | (0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 13 | B. | 11 | C. | 9 | D. | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com