分析 利用基本不等式求出m,利用指數(shù)函數(shù)的單調(diào)性轉(zhuǎn)化不等式,即可得出結(jié)論.
解答 解:∵實數(shù)a>0,b>0,且$\frac{1}{a}$+$\frac{2}$=1,
∴$\frac{2a+b}{4}$=$\frac{2a+b}{4}$($\frac{1}{a}$+$\frac{2}$)=$\frac{1}{4}$(4+$\frac{a}$+$\frac{4a}$)≥2,
∴m=2.
不等式m|x-1|-|x+2|<1等價于|x-1|-|x+2|<0,
∴2x+1>0,
∴x>-$\frac{1}{2}$
∴不等式m|x-1|-|x+2|<1解集為$(-\frac{1}{2},+∞)$.
故答案為$(-\frac{1}{2},+∞)$.
點評 本題考查基本不等式的運用,考查學(xué)生解不等式的能力,正確轉(zhuǎn)化是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 圖象關(guān)于點(π,0)對稱的函數(shù) | B. | 圖象關(guān)于點$(\frac{3π}{2},0)$對稱的函數(shù) | ||
C. | 圖象關(guān)于點$(\frac{π}{2},0)$對稱的函數(shù) | D. | 圖象關(guān)于點$(\frac{π}{4},0)$對稱的函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a+b≤2且ab≤1,則a≤1且b≤1 | B. | 若a+b≤2且ab≤1,則a≤1或b≤1 | ||
C. | 若a+b≤2或ab≤1,則a≤1且b≤1 | D. | 若a+b≤2或ab≤1,則a≤1或b≤1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2016 | B. | 1 | C. | 0 | D. | -2015 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com