2.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F(c,0),圓F:(x-c)2+y2=c2,直線l與雙曲線C的一條漸近線垂直且在x軸上的截距為$\frac{2}{3}$a.若圓F被直線l所截得的弦長為$\frac{4\sqrt{2}}{3}$c,則雙曲線的離心率為( 。
A.$\frac{4}{3}$B.$\frac{5}{3}$C.2D.3

分析 由題意,設(shè)直線方程為y=-$\frac{a}$(x-$\frac{2}{3}$a),即$\frac{a}$x+y-$\frac{2{a}^{2}}{3b}$=0,利用圓F被直線l所截得的弦長為$\frac{4\sqrt{2}}{3}$c,可得圓心到直線的距離d=$\frac{|\frac{ac}-\frac{2{a}^{2}}{3b}|}{\sqrt{\frac{{a}^{2}}{^{2}}+1}}$=$\sqrt{{c}^{2}-(\frac{2\sqrt{2}}{3}c)^{2}}$,即可求出雙曲線的離心率.

解答 解:由題意,設(shè)直線方程為y=-$\frac{a}$(x-$\frac{2}{3}$a),即$\frac{a}$x+y-$\frac{2{a}^{2}}{3b}$=0,
∵圓F被直線l所截得的弦長為$\frac{4\sqrt{2}}{3}$c,
∴圓心到直線的距離d=$\frac{|\frac{ac}-\frac{2{a}^{2}}{3b}|}{\sqrt{\frac{{a}^{2}}{^{2}}+1}}$=$\sqrt{{c}^{2}-(\frac{2\sqrt{2}}{3}c)^{2}}$,
∴e2-3e+2=0,
∵e>1,
∴e=2,
故選C.

點評 本題考查雙曲線的離心率,考查直線與圓的位置關(guān)系的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某工廠生產(chǎn)某種零件,每個零件成本為40元,出廠單價為70元.該廠為了鼓勵銷售商訂購,決定當(dāng)一次訂購量超過100個時,每多訂一個,訂購的全部零件的出廠單價就降低0.02元,但實際出廠價不能低于61元.
(1)設(shè)訂購量為x個時,零件的實際出廠單價為y元,寫出函數(shù)y=f(x)的函數(shù)解析式;
(2)當(dāng)銷售商一次訂購500個時,該廠獲得的利潤是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知關(guān)于x的方程為x2+x+n2=0,若n∈[-1,1],則方程有實數(shù)根的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)全集U=R,$A=\left\{{x|\frac{x-3}{x-1}>0}\right\}$,B={x|x<2},則(∁UA)∩B=(  )
A.{x|1≤x<2}B.{x|1<x<2}C.{x|x<2}D.{x|x≥1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.定義符號函數(shù)為sgn(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,則下列命題:
①|(zhì)x|=x•sgn(x);
②關(guān)于x的方程lnx•sgn(lnx)=sinx•sgn(sinx)有5個實數(shù)根;
③若lna•sgn(lna)=lnb•sgn(lnb)(a>b),則a+b的取值范圍是(2,+∞);
④設(shè)f(x)=(x2-1)•sgn(x2-1),若函數(shù)g(x)=f2(x)+af(x)+1有6個零點,則a<-2.
正確的有( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在三棱錐E-ABC中,AB⊥AC,AB=1,AC=$\frac{\sqrt{2}}{2}$,點D在線段BC上,且BD=2CD,ED⊥平面ABC,F(xiàn),G,H是EB,EA,EC上的點,F(xiàn)H與ED交于點I.
(I)若$\frac{EF}{EB}$=$\frac{EG}{EA}$=$\frac{EH}{EC}$=$\frac{2}{3}$,證明:GI∥AD;
(Ⅱ)證明:AD⊥BE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知i是虛數(shù)單位,復(fù)數(shù)$z=i+\frac{2}{1-i}$,則復(fù)數(shù)$\overline z$的虛部是( 。
A.$-\frac{1}{2}$B.$\frac{3}{2}$C.$-\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.口袋中裝有4個形狀大小完全相同的小球,小球的編號分別為1,2,3,4,甲、乙、丙依次有放回地隨機抽取1個小球,取到小球的編號分別為a,b,c.
(1)在一次抽取中,若有兩人抽取的編號相同,則稱這兩人為“好朋友”,求甲、乙兩人成為“好朋友”的概率;
(2)求抽取的編號能使方程a+b+2c=6成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x||x|≤2},B={x|x2-2x-3≤0},則A∩B=( 。
A.[-1,2]B.[-2,3]C.[-2,1]D.[1,2]

查看答案和解析>>

同步練習(xí)冊答案