13.已知關(guān)于x的方程為x2+x+n2=0,若n∈[-1,1],則方程有實(shí)數(shù)根的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

分析 由題意知方程的判別式大于等于零求出n的范圍,再判斷出所求的事件符合幾何概型,再由幾何概型的概率公式求出所求事件的概率.

解答 解:若關(guān)于x的方程x2+x+n2=0有實(shí)根,則△=1-4n2≥0,
解得-$\frac{1}{2}$≤n≤$\frac{1}{2}$;
記事件A:關(guān)于x的方程為x2+x+n2=0,若n∈[-1,1],則方程有實(shí)數(shù)根,符合幾何概型,
∴P(A)=$\frac{\frac{1}{2}+\frac{1}{2}}{1+1}$=$\frac{1}{2}$.
故選B.

點(diǎn)評(píng) 本題考查了求幾何概型下的隨機(jī)事件的概率,即求出所有實(shí)驗(yàn)結(jié)果構(gòu)成區(qū)域的長(zhǎng)度和所求事件構(gòu)成區(qū)域的長(zhǎng)度,再求比值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.△ABC中,cosC是方程2x2-3x-2=0的一個(gè)根.
(1)求C的度數(shù);
(2)當(dāng)a+b=10時(shí),求△ABC周長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,若以MF為直徑的圓過點(diǎn)(0,2),則p的值為2或8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知直線y=b與函數(shù)f(x)=2x+3和g(x)=ax+lnx分別交于A,B兩點(diǎn),若|AB|的最小值為2,則a+b=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)$f(x)=\left\{\begin{array}{l}{log_5}({1-x})({x<1})\\-{({x-2})^2}+2({x≥1})\end{array}\right.$,則方程f(|x|)=a(a∈R)實(shí)根個(gè)數(shù)不可能為(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4 個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.直線l與拋物線C:y2=2x交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若直線OA,OB的斜率k1,k2滿足k1k2=$\frac{2}{3}$,則直線l過定點(diǎn)(-3,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分記錄用莖葉圖表示,從莖葉圖的分布情況看,乙運(yùn)動(dòng)員的發(fā)揮更穩(wěn)定.(填“甲”或“乙”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F(c,0),圓F:(x-c)2+y2=c2,直線l與雙曲線C的一條漸近線垂直且在x軸上的截距為$\frac{2}{3}$a.若圓F被直線l所截得的弦長(zhǎng)為$\frac{4\sqrt{2}}{3}$c,則雙曲線的離心率為( 。
A.$\frac{4}{3}$B.$\frac{5}{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知關(guān)于x的不等式$|{x-1}|-|{2x-1}|>{log_{\frac{1}{3}}}a$(其中a>0).
(1)當(dāng)a=3時(shí),求不等式的解集;
(2)若不等式有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案