【題目】甲、乙兩艘輪船都要在某個(gè)泊位停靠6小時(shí),假定它們在一晝夜的時(shí)間段中隨機(jī)到達(dá),則這兩艘船中至少有一艘在停靠泊位時(shí)必須等待的概率是 .
【答案】
【解析】解:設(shè)甲到達(dá)的時(shí)刻為x,乙到達(dá)的時(shí)刻為y則所有的基本事件構(gòu)成的區(qū)域
Ω滿足0≤x≤24且0≤y≤24,
這兩艘船中至少有一艘在?坎次粫r(shí)必須等待包含的基本事件構(gòu)成的區(qū)域
A滿足0≤x≤24且0≤y≤24且|x﹣y|≤6,作出對應(yīng)的平面區(qū)域如圖:
這兩艘船中至少有一艘在?坎次粫r(shí)必須等待的概率P(A)= ;
故答案為: .
設(shè)出甲、乙到達(dá)的時(shí)刻,列出所有基本事件的約束條件同時(shí)列出這兩艘船中至少有一艘在停靠泊位時(shí)必須等待約束條件,利用線性規(guī)劃作出平面區(qū)域,利用幾何概型概率公式求出概率
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=a2x+ (a,b,c為常數(shù),且a>0,c>0).
(1)當(dāng)a=1,b=0時(shí),求證:|f(x)|≥2c;
(2)當(dāng)b=1時(shí),如果對任意的x>1都有f(x)>a恒成立,求證:a+2c>1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園,種植桃樹,已知角A為120°.現(xiàn)在邊界AP,AQ處建圍墻,PQ處圍柵欄.
(1)若∠APQ=15°,AP與AQ兩處圍墻長度和為100( +1)米,求柵欄PQ的長;
(2)已知AB,AC的長度均大于200米,若水果園APQ面積為2500 平方米,問AP,AQ長各為多少時(shí),可使三角形APQ周長最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}是有窮數(shù)列,且a1∈R,公差d=2,記{an}的所有項(xiàng)之和為S,若a12+S≤96,則數(shù)列{an}至多有項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直四棱柱ABCD﹣A1B1C1D1的底面ABCD為菱形,且∠BCD=60°,P為AD1的中點(diǎn),Q為BC的中點(diǎn)
(1)求證:PQ∥平面D1DCC1;
(2)求證:DQ⊥平面B1BCC1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記等比數(shù)列{an}前n項(xiàng)和為Sn , 已知a1+a3=30,3S1 , 2S2 , S3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=3,bn+1﹣3bn=3an , 求數(shù)列{bn}的前n項(xiàng)和Bn;
(3)刪除數(shù)列{an}中的第3項(xiàng),第6項(xiàng),第9項(xiàng),…,第3n項(xiàng),余下的項(xiàng)按原來的順序組成一個(gè)新數(shù)列,記為{cn},{cn}的前n項(xiàng)和為Tn , 若對任意n∈N* , 都有 >a,試求實(shí)數(shù)a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,且拋物線上有一點(diǎn)P(4,m)到焦點(diǎn)的距離為6.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若拋物線C與直線y=kx﹣2相交于不同的兩點(diǎn)A、B,且AB中點(diǎn)橫坐標(biāo)為2,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)據(jù)x1 , x2 , x3 , …,x100是杭州市100個(gè)普通職工的2016年10月份的收入(均不超過2萬元),設(shè)這100個(gè)數(shù)據(jù)的中位數(shù)為x,平均數(shù)為y,方差為z,如果再加上馬云2016年10月份的收入x101(約100億元),則相對于x、y、z,這101個(gè)月收入數(shù)據(jù)( )
A.平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
B.平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
C.平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
D.平均數(shù)大大增大,中位數(shù)可能不變,方差變大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)已知數(shù)列(, )滿足, 其中, .
(1)當(dāng)時(shí),求關(guān)于的表達(dá)式,并求的取值范圍;
(2)設(shè)集合.
①若, ,求證: ;
②是否存在實(shí)數(shù), ,使, , 都屬于?若存在,請求出實(shí)數(shù), ;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com