【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園,種植桃樹,已知角A為120°.現(xiàn)在邊界AP,AQ處建圍墻,PQ處圍柵欄.
(1)若∠APQ=15°,AP與AQ兩處圍墻長度和為100( +1)米,求柵欄PQ的長;
(2)已知AB,AC的長度均大于200米,若水果園APQ面積為2500 平方米,問AP,AQ長各為多少時(shí),可使三角形APQ周長最?
【答案】
(1)解:∵依題意,∠AQP=45°,由正弦定理: ,
∴得 ,
∵ ,
∴
(2)解:設(shè)AP=x米,AQ=y米.
則 xy=10000,
,
設(shè)△ABC的周長為L,則L= = ,
令x+y=t,L= 在定義域上單調(diào)增,
所以 ,當(dāng)x=y=100取等號(hào);
所以當(dāng)AP=AQ=100米時(shí),三角形地塊APQ的周長最小
【解析】(1)依題意,∠AQP=45°,由正弦定理: ,可得 利用特殊角的三角函數(shù)值即可計(jì)算得解PQ的值.(2)設(shè)AP=x米,AQ=y米,利用三角形面積公式可求xy=10000,進(jìn)而可求 ,設(shè)△ABC的周長為L,則L= = ,令x+y=t,L= 在定義域上單調(diào)增,利用二次函數(shù)的圖象和性質(zhì)即可得解.
【考點(diǎn)精析】通過靈活運(yùn)用正弦定理的定義和余弦定理的定義,掌握正弦定理:;余弦定理:;;即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , a2=4,S5=30
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為Tn , 求證: ≤Tn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=3an﹣3,數(shù)列{bn}的前n項(xiàng)和Tn滿足 = +1且b1=1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前n項(xiàng)和Pn;
(3)數(shù)列{Sn}中是否存在不同的三項(xiàng)Sp , Sq , Sr , 使這三項(xiàng)恰好構(gòu)成等差數(shù)列?若存在,求出p,q,r的關(guān)系;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線 x+y﹣ =0經(jīng)過橢圓C: + =1(a>b>0)的右焦點(diǎn)和上頂點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)(0,﹣2)的直線l與橢圓C交于不同的A,B兩點(diǎn),若∠AOB為鈍角,求直線l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017重慶二診】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評(píng)定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計(jì)其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設(shè),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足:a4=7,a10=19,其前n項(xiàng)和為Sn .
(1)求數(shù)列{an}的通項(xiàng)公式an及Sn;
(2)若等比數(shù)列{bn}的前n項(xiàng)和為Tn , 且b1=2,b4=S4 , 求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線 =1(a>0,b>0)的左右焦點(diǎn)分別為F1 , F2漸近線分別為l1 , l2 , 位于第一象限的點(diǎn)P在l1上,若l2⊥PF1 , l2∥PF2 , 則雙曲線的離心率是( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩艘輪船都要在某個(gè)泊位?6小時(shí),假定它們在一晝夜的時(shí)間段中隨機(jī)到達(dá),則這兩艘船中至少有一艘在?坎次粫r(shí)必須等待的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長為2的兩個(gè)全等的等腰直角三角形,則該幾何體的外接球的表面積是( )
A.
B.4 π
C.12π
D. π
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com