函數(shù)f(x)=
1-x
的定義域( 。
A、(-∞,0)
B、(-∞,0]
C、(0,+∞)
D、(-∞,1]
考點(diǎn):函數(shù)的定義域及其求法
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:要使函數(shù)有意義,則需1-x≥0,解得即可得到定義域.
解答: 解:要使函數(shù)有意義,則需1-x≥0,
解得,x≤1.
則定義域?yàn)椋?∞,1].
故選D.
點(diǎn)評(píng):本題考查函數(shù)的定義域的求法,注意偶次根式被開(kāi)方式非負(fù),考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列三個(gè)圖象中能表示y是x的函數(shù)圖象的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=(
1
2
x2-2的單調(diào)遞減區(qū)間為( 。
A、(-∞,0]
B、[0,+∞)
C、(-∞,
2
]
D、[
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
log0.2(x+1)
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合M={x|x2+x-6=0},N={x|ax-1=0},且M∩N=N,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
1
2
,橢圓C上一點(diǎn)到點(diǎn)Q(1,0)的距離的最大值為3.
(1)求橢圓C的方程;
(2)A、B為橢圓上的兩個(gè)動(dòng)點(diǎn),△ABO的面積為
3
,M為AB中點(diǎn),判斷|AB|2+4|OM|2是否為定值,并求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}滿足:a1=
2
3
,a2=2,3(an+1-2an+an-1)=2,
(1)證明:數(shù)列{an+1-an}是等差數(shù)列;
(2)求使
1
a1
+
1
a2
+
1
a3
+…+
1
an
5
2
成立的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,P,Q,R分別是棱BC,CD,DD1的中點(diǎn).下列命題:
①過(guò)A1C1且與CD1平行的平面有且只有一個(gè);
②平面PQR截正方體所得截面圖形是等腰梯形;
③AC1與QR所成的角為60°;
④線段EF與GH分別在棱A1B1和CC1上運(yùn)動(dòng),且EF+GH=1,則三棱錐E-FGH體積的最大值是
1
12
;
⑤線段MN是該正方體內(nèi)切球的一條直徑,點(diǎn)O在正方體表面上運(yùn)動(dòng),則
OM
ON
的取值范圍是[0,2].
其中真命題的序號(hào)是
 
 (寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若平面直角坐標(biāo)系內(nèi)兩點(diǎn)M、N滿足條件:①M(fèi)、N都在函數(shù)y=f(x)的圖象上;②M、N關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)對(duì)(M、N)是函數(shù)y=f(x)的一個(gè)“共生點(diǎn)對(duì)”(點(diǎn)對(duì)(M、N)與(N、M)可看作同一個(gè)“共生點(diǎn)對(duì)”),已知函數(shù)f(x)=
x2-4x+5x≥0
-2ln(-x)x<0
則此函數(shù)的“共生點(diǎn)對(duì)”有
 
個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案