定義在R上的函數(shù)f(x)滿足(x+2)f ′(x)<0(其中f ′(x)是函數(shù)f(x)的導(dǎo)數(shù)),又a=f(log3),b=f[()0.1],c=f(ln3),則a,b,c的大小關(guān)系為______.(從大到小排列)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
直線y=kx+1與曲線y=x3+ax+b相切于點(diǎn)A(1,3),則2a+b的值為( )
A.2 B.-1
C.1 D.-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)= (k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與x軸平行.
(1)求k的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)設(shè)g(x)=(x2+x)f ′(x),其中f ′(x)為f(x)的導(dǎo)函數(shù),證明:對任意x>0,g(x)<1+e-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某公司生產(chǎn)某種產(chǎn)品,固定成本為20000元,每生產(chǎn)一單位產(chǎn)品,成本增加100元,已知總收益R與產(chǎn)量x的關(guān)系是R=則總利潤最大時,每年生產(chǎn)的產(chǎn)品產(chǎn)量是( )
A.100 B.150
C.200 D.300
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=x3-ax2+bx+3(a,b∈R),若函數(shù)f(x)在[0,1]上單調(diào)遞減,則a2+b2的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
一輛汽車在高速公路上行駛,由于遇到緊急情況而剎車,以速度v(t)=7-3t+ (t的單位:s,v的單位:m/s)行駛至停止.在此期間汽車?yán)^續(xù)行駛的距離(單位:m)是( )
A.1+25ln5 B.8+25ln
C.4+25ln5 D.4+50ln2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知在平面直角坐標(biāo)系中,圓的方程為.以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,且與直角坐標(biāo)系取相同的單位長度,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求直線的直角坐標(biāo)方程和圓的參數(shù)方程;
(Ⅱ)求圓上的點(diǎn)到直線的距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com