(本題9分)已知函數(shù)。
(Ⅰ)若在上的最小值是,試解不等式;
(Ⅱ)若在上單調(diào)遞增,試求實(shí)數(shù)的取值范圍。
(Ⅰ);(Ⅱ)。
解析試題分析:(Ⅰ)由已知得在上單調(diào)遞增,所以, 2分
又,所以, 2分
所以,即不等式解集為。 1分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0f/5/vjbrd.png" style="vertical-align:middle;" />在上單調(diào)遞增,
所以① 2分
或 ② 2分
綜上,。
考點(diǎn):二次函數(shù)的單調(diào)性;二次函數(shù)的最值;不等式的解法;函數(shù)的圖像。
點(diǎn)評:數(shù)學(xué)結(jié)合是解決此類的常用方法。我們應(yīng)熟練掌握函數(shù)的畫法:把的圖像x軸下方的關(guān)于x軸翻到x軸上方去即可得的圖像。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) ,為的導(dǎo)數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間和極值;
(2)設(shè),是否存在實(shí)數(shù),對于任意的,存在,使得成立?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若為的極值點(diǎn),求實(shí)數(shù)的值;
(Ⅱ)若在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)當(dāng)時,方程有實(shí)根,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)已知函數(shù),其中常數(shù)。
(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)時,是否存在實(shí)數(shù),使得直線恰為曲線的切線?若存在,求出的值;若不存在,說明理由;
(3)設(shè)定義在上的函數(shù)的圖象在點(diǎn)處的切線方程為,當(dāng)時,若在內(nèi)恒成立,則稱為函數(shù)的“類對稱點(diǎn)”。當(dāng),試問是否存在“類對稱點(diǎn)”?若存在,請至少求出一個“類對稱點(diǎn)”的橫坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
定義在上的奇函數(shù),已知當(dāng)時,
(1)寫出在上的解析式
(2)求在上的最大值
(3)若是上的增函數(shù),求實(shí)數(shù)的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(10分)知函數(shù)是定義在上的奇函數(shù),且當(dāng)時,+1.
(1)計(jì)算,; (2)當(dāng)時,求的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知:函數(shù)y=f (x)的定義域?yàn)镽,且對于任意的a,b∈R,都有f (a+b)=f (a)+f (b),且當(dāng)x>0時,f (x)<0恒成立.
證明:(1)函數(shù)y=f (x)是R上的減函數(shù).
(2)函數(shù)y=f (x)是奇函數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com