A. | x+4y-2=0 | B. | x-4y+2=0 | C. | 4x+2y-1=0 | D. | 4x-2y-1=0 |
分析 求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,再由基本不等式可得切線的斜率的最小值,可得切點(diǎn)的坐標(biāo),再由斜截式方程,即可得到切線方程.
解答 解:y=$\frac{1}{{e}^{x}+1}$的導(dǎo)數(shù)為y′=-$\frac{{e}^{x}}{({e}^{x}+1)^{2}}$,
即有-$\frac{{e}^{x}}{({e}^{x}+1)^{2}}$=-$\frac{1}{{e}^{x}+{e}^{-x}+2}$≥-$\frac{1}{2\sqrt{{e}^{x}•{e}^{-x}}+2}$=-$\frac{1}{4}$.
當(dāng)且僅當(dāng)x=0時(shí),取得等號(hào).
即有切線的斜率為k=-$\frac{1}{4}$,切點(diǎn)為(0,$\frac{1}{2}$),
則切線的方程為y=-$\frac{1}{4}$x+$\frac{1}{2}$,
即為x+4y-2=0.
故選:A.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查基本不等式的運(yùn)用:求最值,考查運(yùn)算能力,正確求導(dǎo)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |a|>1 | B. | |a||<$\sqrt{2}$ | C. | |a|>$\sqrt{2}$ | D. | 1<|a|<$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com