(本小題13分)已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點,點A,B分別在橢圓上,,求直線的方程.
(1)  (2)

試題分析:(1)由已知可設(shè)橢圓的方程為 
其離心率為,故,則
故橢圓的方程為        5分
(2)解法一 兩點的坐標(biāo)分別記為 
及(1)知,三點共線且點,不在軸上,
因此可以設(shè)直線的方程為
代入中,得,所以
代入中,則,所以
,得,即
解得,故直線的方程為         13分
點評:第二問由已知中的向量可知只需求解出A,B兩點坐標(biāo)代入即可得到關(guān)于所求直線斜率k的直線,因此設(shè)AB直線,聯(lián)立方程解出方程組
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點P到點的距離比它到直線的距離大1,則點P滿足的方程為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求由拋物線與它在點和點的切線所圍成的區(qū)域的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知命題:拋物線的準(zhǔn)線方程為;命題:平面內(nèi)兩條直線的斜率相等是兩條直線平行的充分不必要條件;則下列命題是真命題的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知曲線和曲線,則上到的距離等于的點的個數(shù)為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,橢圓右頂點到直線的距離為,離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A為橢圓與y軸負半軸的交點,設(shè)直線,是否存在實數(shù)m,使直線與(Ⅰ)中的橢圓有兩個不同的交點M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

北京奧運會主體育場“鳥巢”的簡化鋼結(jié)構(gòu)俯視圖如圖所示,內(nèi)外兩圈的鋼骨架是離心率相同的橢圓,從外層橢圓頂點A、B向內(nèi)層橢圓引切線AC、BD設(shè)內(nèi)層橢圓方程為+=1(ab0),外層橢圓方程為+=1(ab0,m1),AC與BD的斜率之積為-,則橢圓的離心率為(   )
A.  B.  C.  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知拋物線經(jīng)過橢圓的兩個焦點.設(shè),又不在軸上的兩個交點,若的重心(中線的交點)在拋物線上,

(1)求的方程.
(2)有哪幾條直線與都相切?(求出公切線方程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)點P是雙曲線上除頂點外的任意一點,F(xiàn)1,F(xiàn)2分別為左、右焦點,c 為半焦距,PF1F2的內(nèi)切圓與邊F1F2切于點M,求|F1M|·|F2M|=       

查看答案和解析>>

同步練習(xí)冊答案