19.直線$\sqrt{3}$x-3y+a=0的傾斜角為(  )
A.60°B.30°C.150°D.120°

分析 由直線l的傾斜角α與斜率k的關(guān)系,可以求出α的值.

解答 解:設(shè)直線l:$\sqrt{3}$x-3y+a=0的傾斜角是α,
則直線l的方程可化為y=$\frac{\sqrt{3}}{3}$x+$\frac{a}{3}$,
l的斜率k=tanα=$\frac{\sqrt{3}}{3}$,
∵0°≤α<180°,
∴α=30°;
故選:B.

點(diǎn)評(píng) 本題考查了利用直線的斜率求傾斜角的問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖是某校舉行歌唱比賽時(shí),七位評(píng)委為某位選手打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的中位數(shù)和平均數(shù)依次為( 。
A.87,86B.83,85C.88,85D.82,86

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.當(dāng)θ在實(shí)數(shù)范圍內(nèi)變化時(shí),直線xsinθ+y-3=0的傾斜角的取值范圍是[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等比數(shù)列{an}的首項(xiàng)為1,公比為q,它的前n項(xiàng)和為Sn
(1)若S3=3,S6=-21,求公比q;
(2)若q>0,且Tn=a1+a3+…+a2n-1,求$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{T}_{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在等比數(shù)列{an}中,a1=9,a5=a3a42,則a4=(  )
A.$\frac{1}{9}$B.$±\frac{1}{9}$C.$\frac{1}{3}$D.$±\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.圓x2+y2-4x=0關(guān)于直線x=0對(duì)稱的圓的方程為x2+y2+4x=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{ax}{{{x^2}+1}}$(x∈R),如圖是函數(shù)f(x)在[0,+∞)上的圖象,
(1)求a的值,并補(bǔ)充作出函數(shù)f(x)在(-∞,0)上的圖象,說明作圖的理由;
(2)根據(jù)圖象指出(不必證明)函數(shù)的單調(diào)區(qū)間與值域;
(3)若方程f(x)=lnb恰有兩個(gè)不等實(shí)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù)g(x)=log${\;}_{\frac{1}{3}}$(x2+$\frac{2}{3}$bx+$\frac{c}{3}$)的單調(diào)遞增區(qū)間為( 。
A.[-2,+∞)B.(-∞,-2)C.(3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆山東臨沭一中高三上學(xué)期10月月考數(shù)學(xué)(文)試卷(解析版) 題型:填空題

已知,,,則的最小值是

查看答案和解析>>

同步練習(xí)冊(cè)答案