【題目】如圖,在四棱錐P﹣ABCD中,底面是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD,若E、F分別為PC、BD的中點(diǎn).
(Ⅰ) 求證:EF∥平面PAD;
(Ⅱ) 求證:EF⊥平面PDC.

【答案】證明:(Ⅰ)連接AC,則F是AC的中點(diǎn),在△CPA中,EF∥PA且PA平面PAD,EF平面PAD,
∴EF∥平面PAD
(Ⅱ)因?yàn)槠矫鍼AD⊥平面ABCD,平面PAD∩平面ABCD=AD,
又CD⊥AD,所以CD⊥平面PAD,
∴CD⊥PA
又PA=PD= AD,
所以△PAD是等腰直角三角形,且∠APD= ,即PA⊥PD
而CD∩PD=D,
∴PA⊥平面PDC,又EF∥PA,所以EF⊥平面PDC
【解析】對(duì)于(Ⅰ),要證EF∥平面PAD,只需證明EF平行于平面PAD內(nèi)的一條直線(xiàn)即可,而E、F分別為PC、BD的中點(diǎn),所以連接AC,EF為中位線(xiàn),從而得證;
對(duì)于(Ⅱ)要證明EF⊥平面PDC,由第一問(wèn)的結(jié)論,EF∥PA,只需證PA⊥平面PDC即可,已知PA=PD= AD,可得PA⊥PD,只需再證明PA⊥CD,而這需要再證明CD⊥平面PAD,
由于A(yíng)BCD是正方形,面PAD⊥底面ABCD,由面面垂直的性質(zhì)可以證明,從而得證.

【考點(diǎn)精析】關(guān)于本題考查的空間中直線(xiàn)與平面之間的位置關(guān)系,需要了解直線(xiàn)在平面內(nèi)—有無(wú)數(shù)個(gè)公共點(diǎn);直線(xiàn)與平面相交—有且只有一個(gè)公共點(diǎn);直線(xiàn)在平面平行—沒(méi)有公共點(diǎn)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近幾年出現(xiàn)各種食品問(wèn)題,食品添加劑會(huì)引起血脂增高、血壓增高、血糖增高等疾病為了解三高疾病是否與性別有關(guān),醫(yī)院隨機(jī)對(duì)入院的60人進(jìn)行了問(wèn)卷調(diào)查,得到了如下的列聯(lián)表:

患三高疾病

不患三高疾病

合計(jì)

6

30

合計(jì)

36

1請(qǐng)將如圖的列聯(lián)表補(bǔ)充完整;若用分層抽樣的方法在患三高疾病的人群中抽人,其中女性抽多少人?

2為了研究三高疾病是否與性別有關(guān),請(qǐng)計(jì)算出統(tǒng)計(jì)量,并說(shuō)明你有多大的把握認(rèn)為三高疾病與性別有關(guān)?

下面的臨界值表供參考:

015

010

005

0025

0010

0005

0001

2072

2706

3841

5024

6635

7879

10828

參考公式,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,底面為正三角形,側(cè)棱垂直底面,AB=2,AA1=6.若E,F(xiàn)分別是棱BB1 , CC1上的點(diǎn),且BE=B1E,C1F= CC1 , 則異面直線(xiàn)A1E與AF所成角的余弦值為(
A.﹣
B.
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=loga(x+2)﹣1(a>0,a≠1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A在直線(xiàn)mx+ny+1=0上,其中m>0,n>0,則 + 的最小值為(
A.3+2
B.3+2
C.7
D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=4tanxsin( ﹣x)cos(x﹣ )﹣
(1)求f(x)的定義域與最小正周期;
(2)討論f(x)在區(qū)間[﹣ ]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,分別是橢圓的左、右焦點(diǎn).

(1)若點(diǎn)是第一象限內(nèi)橢圓上的一點(diǎn), ,求點(diǎn)的坐標(biāo);

(2)設(shè)過(guò)定點(diǎn)的直線(xiàn)與橢圓交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線(xiàn)的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1) 當(dāng)時(shí),解關(guān)于的不等式;

(2) 若對(duì)任意時(shí),恒有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某客運(yùn)公司用A,B兩種型號(hào)的車(chē)輛承擔(dān)甲、乙兩地間的長(zhǎng)途客運(yùn)業(yè)務(wù),每車(chē)每天往返一次.A,B兩種車(chē)輛的載客量分別為36人和60人,從甲地去乙地的營(yíng)運(yùn)成本分別為1600元/輛和2400元/輛.公司擬組建一個(gè)不超過(guò)21輛車(chē)的客運(yùn)車(chē)隊(duì),并要求B型車(chē)不多于A(yíng)型車(chē)7輛.若每天要以不少于900人運(yùn)完從甲地去乙地的旅客,且使公司從甲地去乙地的營(yíng)運(yùn)成本最小,那么應(yīng)配備A型車(chē)、B型車(chē)各多少輛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行運(yùn)動(dòng)會(huì),其中三級(jí)跳遠(yuǎn)的成績(jī)?cè)?.0米(四舍五入,精確到0.1米)以上的進(jìn)入決賽,把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫(huà)出頻率分布直方圖的一部分(如圖),已知從左到右前5個(gè)小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.
(Ⅰ)求進(jìn)入決賽的人數(shù);
(Ⅱ)若從該校學(xué)生(人數(shù)很多)中隨機(jī)抽取兩名,記X表示兩人中進(jìn)入決賽的人數(shù),求X的分布列及數(shù)學(xué)期望;
(Ⅲ)經(jīng)過(guò)多次測(cè)試后發(fā)現(xiàn),甲成績(jī)均勻分布在8~10米之間,乙成績(jī)均勻分布在9.5~10.5米之間,現(xiàn)甲,乙各跳一次,求甲比乙遠(yuǎn)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案