設橢圓軸正方向交點為A,和軸正方向的交點為B,P為第一象限內(nèi)橢圓上的點,使四邊形OAPB面積最大(O為原點),那么四邊形OAPB面積最大值為( 。
A.  B.  C.  D.
B
利用三角函數(shù)來解答這道題,橢圓方程  上 里面的自變量x,y可以表示為,本題中要求第一象限,這樣就應該有0<a<π,設P為()這樣四邊形OAPB的面積就可以表示為兩個三角形OAP和OPB面積之和,計算兩個三角形的面積并借助于三角公式即可求出OAPB面積的最大值.
解答:解:由于點P是橢圓和上的在第一象限內(nèi)的點,
設P為()即 (0<a<π),
這樣四邊形OAPB的面積就可以表示為兩個三角形OAP和OPB面積之和,
對于三角形OAP有面積S1=,對于三角形OBP有面積S2=
∴四邊形的面積S=S1+S2= 
=absin(a+
其最大值就應該為ab,
并且當且僅當a=時成立.所以,面積最大值 ab.
故選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,橢圓 的離心率為,其兩焦點分別為,是橢圓在第一象限弧上一點,并滿足,過作傾斜角互補的兩條直線分別交橢圓于兩點.   
(1)求橢圓的方程.
(2)求點坐標;                               
(3)當直線的斜率為時,求直線的方程.   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的離心率為,焦點是,則橢圓方程為      ( ■ )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的左、右焦點分別為,上頂點為,過點垂直的直線交軸負半軸于點,且,若過,,三點的圓恰好與直線相切. 過定點的直線與橢圓交于兩點(點在點,之間).

(Ⅰ)求橢圓的方程;
(Ⅱ)設直線的斜率,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形. 如果存在,求出的取值范圍,如果不存在,請說明理由;
(Ⅲ)若實數(shù)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的左右焦點為F1,F(xiàn)2,點P在橢圓上,且|PF1|=6,則=

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線與橢圓相交于兩點,弦的中點坐標為,則直線的方程為         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

方程表示橢圓,則實數(shù)的取值范圍                  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的兩焦點分別為F1、F2,過F1作直線交橢圓于A、B兩點,
則△ABF2周長為_____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

[理]如圖,已知動點分別在圖中拋物線及橢圓的實線上運動,若軸,點的坐標為,則的周長的取值范圍是   ▲   

查看答案和解析>>

同步練習冊答案