17.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是兩個單位向量,其夾角為θ,若向量$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,|$\overrightarrow{a}$|=1,則θ=( 。
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

分析 根據(jù)向量的數(shù)量積公式計算即可.

解答 解:∵$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是兩個單位向量,其夾角為θ,若向量$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,|$\overrightarrow{a}$|=1,
∴|2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$|2=4|$\overrightarrow{{e}_{1}}$|2+9|$\overrightarrow{{e}_{2}}$|2+12|$\overrightarrow{{e}_{1}}$|•|$\overrightarrow{{e}_{2}}$|•cosθ=4+9+12cosθ=1,
∴cosθ=-1.
∴θ=π
故選:A.

點評 本題考查了向量的數(shù)量積和向量的模的計算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2+|x-t|.
(Ⅰ)當(dāng)t=1時,求不等式f(x)≥1的解集;
(Ⅱ)設(shè)函數(shù)f(x)在[0,2]上的最小值為h(t),求h(t)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.雙曲線$C:\frac{x^2}{9}-\frac{y^2}{9}=1$的離心率為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{2}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)等差數(shù)列{an}的前n項和是Sn,已知am-1+am+1-am2=0,S2m-1=38,求m;
(2)設(shè)等差數(shù)列{an}的前n項和是Sn,若S3=9,S6=36,求a7+a8+a9;
(3)若一個等差數(shù)列前3項的和為34,最后3項的和為146,且所有項的和為390,求這個數(shù)列的項數(shù);
(4)已知數(shù)列{an}的通項公式是an=4n-25,求數(shù)列{|an|}的前n項和并說出判斷數(shù)列是等差數(shù)列的基本方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)a∈R,f(x)=ax2-lnx,g(x)=ex-ax.
(1)當(dāng)曲線y=f(x)在點(1,f(1))處的切線的斜率大于-1時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)•g(x)>0對x∈(0,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.湖面上漂著一個小球,湖水結(jié)冰后將球取出,冰面上留下一個直徑為12cm,深2cm的空穴,則該球的表面積是(  )
A.100πcm2B.200πcm2C.$\frac{400π}{3}c{m^2}$D.400πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.cos$\frac{7}{6}$π=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若750°角的終邊上有一點(4,a),則a=$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}的前n項和為Sn,a10=30,a15=40
(1)求通項an
(2)若Sn=210,求n.

查看答案和解析>>

同步練習(xí)冊答案