2.湖面上漂著一個(gè)小球,湖水結(jié)冰后將球取出,冰面上留下一個(gè)直徑為12cm,深2cm的空穴,則該球的表面積是( 。
A.100πcm2B.200πcm2C.$\frac{400π}{3}c{m^2}$D.400πcm2

分析 作出空穴的截面圖,根據(jù)截面圖求出球的半徑即可求出球的表面積.

解答 解:作出空穴的截面圖,
由題意知AB=12cm,CD=2cm.
則BC=6cm,設(shè)球比較為R,
則OC=R-2,
在直角三角形OCB中,OB2=OC2+BC2
即R2=(R-2)2+62,
即R=10,
∴該球的表面積為4πR2=400π,
故選:D.

點(diǎn)評(píng) 本題主要考查球的表面積的計(jì)算,根據(jù)條件求出球半徑是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.△ABC的內(nèi)角為A、B、C,其中A=$\frac{π}{4}$,cosC=$\frac{3\sqrt{10}}{10}$,BC=$\sqrt{10}$.點(diǎn)D是邊AC的中點(diǎn),則中線BD的長(zhǎng)為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)橢圓$M:\frac{x^2}{{2{c^2}}}+\frac{y^2}{c^2}=1$,其中c>0.
(1)若橢圓M的焦點(diǎn)為F1、F2,且$|{{F_1}{F_2}}|=2\sqrt{6},P$為M上一點(diǎn),求|PF1|+|PF2|的值;
(2)如圖所示,A是橢圓上一點(diǎn),且A在第二象限,A與B關(guān)于原點(diǎn)對(duì)稱,C在x軸上,且AB與x軸垂直,若$\overrightarrow{CA}•\overrightarrow{CB}=-4$,△ABC的面積為4.
(1)求橢圓M的方程;
(2)若直線l與橢圓M交于P、Q,且四邊形APCQ為平行四邊形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.某手機(jī)配件生產(chǎn)流水線共有甲、乙兩條,產(chǎn)量s(單位:個(gè))與時(shí)間t(單位:天)的關(guān)系如圖所示,則接近t0天時(shí),下列結(jié)論中正確的是( 。
A.甲的日生產(chǎn)量大于乙的日生產(chǎn)量
B.甲的日生產(chǎn)量小于乙的日生產(chǎn)量
C.甲的日生產(chǎn)量等于乙的日生產(chǎn)量
D.無(wú)法判定甲的日生產(chǎn)量與乙的日生產(chǎn)量的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是兩個(gè)單位向量,其夾角為θ,若向量$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,|$\overrightarrow{a}$|=1,則θ=( 。
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某奶茶店為了促銷,準(zhǔn)備推出“擲骰子(投擲各面數(shù)字為1到6的均勻正方體,看面朝上的點(diǎn)數(shù))贏代金券”的活動(dòng),游戲規(guī)則如下:顧客每次消費(fèi)后,可同時(shí)投擲兩枚骰子一次,贏得一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)和感謝獎(jiǎng)四個(gè)等級(jí)的代金券,用于在以后來(lái)店消費(fèi)中抵用現(xiàn)金.設(shè)事件A:“兩連號(hào)”;事件B:“兩個(gè)同點(diǎn)”;事件C:“同奇偶但不同點(diǎn)”.
①將以上三種擲骰子的結(jié)果,按出現(xiàn)概率由低到高,對(duì)應(yīng)定為一、二、三等獎(jiǎng)要求的條件;
②本著人人有獎(jiǎng)原則,其余不符合一、二、三等獎(jiǎng)要求的條件均定為感謝獎(jiǎng).請(qǐng)?zhí)嬖摰甓ǔ龈鱾(gè)等級(jí)獎(jiǎng)依次對(duì)應(yīng)的事件并求相應(yīng)概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.有下列四種說(shuō)法,其中正確的有2個(gè).
甲:在△ABC中,若$sinA=\frac{1}{2}$,則∠A=30°
乙:cos(2π-A)=cosA
丙:任何一個(gè)角都存在正(余)弦值和正切值        
丁:sin2130°+sin2140°=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在數(shù)列{an}中,已知a1=2,a2=7,an+2等于${a_n}•{a_{n+1}}(n∈{N^*})$的個(gè)位數(shù),則a2016的值是( 。
A.8B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知某正四面體的內(nèi)切球體積是1,則該正四面體的外接球的體積是( 。
A.27B.16C.9D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案