如圖放置的邊長為1的正方形PABC沿x軸滾動,點B恰好經(jīng)過原點.設(shè)頂點P(x,y)的軌跡方程是y=f(x),則對函數(shù)y=f(x)有下列判斷:
①函數(shù)y=f(x)是偶函數(shù);
②對任意的x∈R,都有f(x+2)=f(x-2);
③函數(shù)y=f(x)在區(qū)間[2,3]上單調(diào)遞減.
其中判斷正確的序號是
 
考點:函數(shù)的圖象,函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)正方形的運動,得到點P的軌跡方程,然后根據(jù)函數(shù)的圖象和性質(zhì)分別進行判斷即可.
解答: 解:當(dāng)-2≤x≤-1,P的軌跡是以A為圓心,半徑為1的
1
4
圓,
當(dāng)-1≤x≤1時,P的軌跡是以B為圓心,半徑為
2
1
4
圓,
當(dāng)1≤x≤2時,P的軌跡是以C為圓心,半徑為1的
1
4
圓,
當(dāng)3≤x≤4時,P的軌跡是以A為圓心,半徑為1的
1
4
圓,
∴函數(shù)的周期是4.
因此最終構(gòu)成圖象如下:

①根據(jù)圖象的對稱性可知函數(shù)y=f(x)是偶函數(shù),∴①正確.
②由圖象即分析可知函數(shù)的周期是4.∴②正確.
③函數(shù)y=f(x)在區(qū)間[2,3]上單調(diào)遞增,∴③錯誤.
故答案為:①②.
點評:本題考查的知識點是函數(shù)圖象的變化與對應(yīng)函數(shù)解析式的問題,其中根據(jù)已知畫出正方形轉(zhuǎn)動過程中的一個周期內(nèi)的圖象,利用數(shù)形結(jié)合的思想對本題進行分析是解答本題的關(guān)鍵
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

sin(
π
2
+θ)+cos(
π
2
-θ)=
1
5
(θ∈(0,π)),則tanθ=( 。
A、-
4
3
B、
4
3
C、
3
4
D、-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=x2-3x-4的定義域為[0,
3
2
]
,則值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,若動點P(a,b)到兩直線l1:y=x和l2:y=-x+2的距離之和為
2
,則a2+b2的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+2ax-1,x∈[-2,2],
(1)當(dāng)a=1時,求f(x)的最大與最小值;  
(2)求實數(shù)a的取值范圍,使函數(shù)f(x)在[-2,2]上不是單調(diào)函數(shù);    
(3)求函數(shù)f(x)的最大值g(a),并求g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=-x2+2ax與g(x)=
a
x+1
在區(qū)間[1,2]上都是減函數(shù),則a的范圍( 。
A、(-1,0)∪(0,1)
B、(-1,0)∪( 0,1]
C、(0,1)
D、( 0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,a,b,c分別是角A,B,C的對邊,向量m=(2sinB,2-cos2B),n=(1+sinB,-1),且m⊥n.
(Ⅰ)求角B的大;
(Ⅱ)若△ABC不是鈍角三角形,且a=
3
,b=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個函數(shù):①y=3-x;②y=
1
x2+1
;③y=x2+2x-10;.其中值域為R的函數(shù)個數(shù)有( 。
A、1個B、2個C、3個D、0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出的b的值為127,則圖中判斷框內(nèi)①處應(yīng)填的整數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案