分析 先根據(jù)分層抽樣求出n的值,再根據(jù)隨機變量ξ服從正態(tài)分布N(4,σ2),得到曲線關(guān)于x=4對稱,根據(jù)曲線的對稱性得到P(1<ξ<7)=$\frac{4}{a+2b}$,求出a+2b=5,由此得到a2+4b2+2$\sqrt{ab}$=-4($\sqrt{ab}$-$\frac{1}{4}$)2+$\frac{101}{4}$,再根據(jù)根據(jù)基本不等式可得.
解答 解:由題意可得$\frac{20}{n}$=$\frac{2000}{2400+1600+2000}$,解得n=60,
則隨機變量ξ~N(4,σ2),P(ξ>7)=0.1,P(1<ξ<7)=$\frac{4}{a+2b}$,
∴曲線關(guān)于x=4對稱,
∴P(1<ξ<7)=1-2P(ξ>7)=1-2×0.1=0.8=$\frac{4}{a+2b}$,
∴a+2b=5,
∴a2+4b2+2$\sqrt{ab}$=(a+2b)2-4ab+2$\sqrt{ab}$=-4($\sqrt{ab}$-$\frac{1}{4}$)2+$\frac{101}{4}$,
∵a>0,b>0,
∴5=a+2b≥2$\sqrt{2ab}$,
∴0<$\sqrt{ab}$≤$\frac{5\sqrt{2}}{4}$,
當$\sqrt{ab}$=$\frac{1}{4}$時,取最大值為$\frac{101}{4}$,
故答案為:$\frac{101}{4}$
點評 本題考查正態(tài)分布曲線的特點及曲線所表示的意義,完全平方公式及基本不等式的運用,配方法的運用,注意基本不等式應用的條件并判斷“=”是否取到.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1,2] | B. | [0,2] | C. | (1,2] | D. | [-1,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | a>c>b | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{50}$ | B. | $\frac{13}{50}$ | C. | $\frac{37}{50}$ | D. | $\frac{49}{50}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com