16.在△ABC中,角A,B,C對應(yīng)的邊分別為a,b,c,若a,b,c等比,則下列結(jié)論一定正確的是( 。
A.A是銳角B.B是銳角
C.C是銳角D.△ABC是鈍角三角形

分析 由a、b、c成等比,可得b2=ac,利用(a-c)2≥0,可得a2+c2≥2b2,利用余弦定理可求cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$≥$\frac{1}{2}$>0,結(jié)合范圍B∈(0,π),即可得解B一定為銳角.

解答 解:∵a,b,c成等比,
∴b2=ac,
∵(a-c)2≥0,可得:a2+c2-2ac=a2+c2-2b2≥0,可得:a2+c2≥2b2,
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$≥$\frac{2^{2}-^{2}}{2^{2}}$=$\frac{1}{2}$>0,
∵B∈(0,π),
∴B一定為銳角.
故選:B.

點(diǎn)評 此題考查了余弦定理,等比數(shù)列的性質(zhì)在解三角形中的應(yīng)用,熟練掌握余弦定理是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=asin3x+bx3+4(a∈R,b∈R),f′(x)為f(x)的導(dǎo)函數(shù),則f(2014)+f(-2014)+f′(2015)-f′(-2015)=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.求函數(shù)y=$\frac{1}{2}$tan(5x+$\frac{π}{4}$)的對稱中心($\frac{kπ}{10}$-$\frac{π}{20}$,0),k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,過⊙O外一點(diǎn)P作一條割線與⊙O交于C、A兩點(diǎn),直線PQ切⊙O于點(diǎn)Q,BD為過CA中點(diǎn)F的⊙O的直徑.
(1)已知PC=4,PQ=6,求DF•BF的值;
(2)過D作⊙O的切線交BA的延長線于點(diǎn)E,若CD=$\sqrt{10}$,BC=5,求AE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“0<α<π”是“x2+y2cosα=1表示橢圓”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn),極軸與x軸的正半軸重合.曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-\sqrt{3}t\\ y=1+t\end{array}\right.$(t為參數(shù),t∈R),
(1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)試求曲線C上的點(diǎn)到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知非零向量$\overrightarrow{AB}$與$\overrightarrow{AC}$滿足$({\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}+\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}}})•\overrightarrow{BC}$=0,且2$\overrightarrow{AB}•\overrightarrow{AC}$=|${\overrightarrow{AB}}$|•|${\overrightarrow{AC}}$|,則△ABC為(  )
A.三邊都不等的三角形B.直角三角形
C.等腰不等邊三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)是定義在(-2,2)上的減函數(shù),并且f(m-1)-f(1-2m)>0,則實(shí)數(shù)m的取值范圍為( 。
A.m<$\frac{2}{3}$B.-1<m<$\frac{2}{3}$C.$-\frac{1}{2}$<m<$\frac{2}{3}$D.m>$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點(diǎn)P(x,y)的坐標(biāo)滿足條件$\left\{\begin{array}{l}{x≥1}\\{y≥x-1}\\{x+3y-5≤0}\end{array}\right.$,那么點(diǎn)P到直線3x-4y-13=0的最小值為2.

查看答案和解析>>

同步練習(xí)冊答案