A. | A是銳角 | B. | B是銳角 | ||
C. | C是銳角 | D. | △ABC是鈍角三角形 |
分析 由a、b、c成等比,可得b2=ac,利用(a-c)2≥0,可得a2+c2≥2b2,利用余弦定理可求cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$≥$\frac{1}{2}$>0,結(jié)合范圍B∈(0,π),即可得解B一定為銳角.
解答 解:∵a,b,c成等比,
∴b2=ac,
∵(a-c)2≥0,可得:a2+c2-2ac=a2+c2-2b2≥0,可得:a2+c2≥2b2,
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$≥$\frac{2^{2}-^{2}}{2^{2}}$=$\frac{1}{2}$>0,
∵B∈(0,π),
∴B一定為銳角.
故選:B.
點(diǎn)評 此題考查了余弦定理,等比數(shù)列的性質(zhì)在解三角形中的應(yīng)用,熟練掌握余弦定理是解本題的關(guān)鍵,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 三邊都不等的三角形 | B. | 直角三角形 | ||
C. | 等腰不等邊三角形 | D. | 等邊三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m<$\frac{2}{3}$ | B. | -1<m<$\frac{2}{3}$ | C. | $-\frac{1}{2}$<m<$\frac{2}{3}$ | D. | m>$-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com