4.如圖,過⊙O外一點P作一條割線與⊙O交于C、A兩點,直線PQ切⊙O于點Q,BD為過CA中點F的⊙O的直徑.
(1)已知PC=4,PQ=6,求DF•BF的值;
(2)過D作⊙O的切線交BA的延長線于點E,若CD=$\sqrt{10}$,BC=5,求AE的值.

分析 (1)由切割線定理,可得PQ2=PC•PA,求出PA,計算出CA,可得AF,由相交弦定理,可得DF•BF;
(2)證明BD⊥DE,利用AD⊥AB,可得AD2=AB•AE,即可求AE的值.

解答 解:(1)由切割線定理,可得PQ2=PC•PA,
∴PA=$\frac{P{Q}^{2}}{PC}$=9,
∴CA=PA-PC=5,
∵F是CA的中點,
∴AF=FC=$\frac{5}{2}$.
由相交弦定理,可得DF•BF=AF•FC=$\frac{25}{4}$;
(2)∵BD是直徑,F(xiàn)是AC的中點,
∴AD=CD=$\sqrt{10}$,AB-BC=5.
∵DE是切線,
∴BD⊥DE,
∵AD⊥AB,
∴AD2=AB•AE,
∴AE=$\frac{A{D}^{2}}{AB}$=2.

點評 相交弦定理、切割線定理注意用于與圓有關(guān)的比例線段的計算與證明,解決問題時要注意相似三角形與圓周角、弦切角、圓的切線、射影定理等相關(guān)知識的綜合應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式|x+1|<2的解集為(-3,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在三棱柱ABC-A1B1C1中,AB⊥AC,頂點A1在底面ABC上的射影恰為點B,且AB=AC=A1B=2.
(1)證明:平面A1AC⊥平面AB1B;
(2)在棱B1C1上是否存在點P,使二面角P-AB-A1的余弦值為$\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.定義在[-3,3]的偶函數(shù)f(x)且滿足f(x+1)=f(x-1),當(dāng)x∈[0,1]時,f(x)=cosx,則y=f(x)與y=lgx的圖象的交點個數(shù)為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知正方體ABCD-A1B1C1D1的棱長為2,E、F、G分別是AA1、A1B1、A1D1的中點.
(Ⅰ)求證:平面EFG∥平面BC1D;
(Ⅱ)在線段BD上是否存在點H,使得EH⊥平面BC1D?若存在,求線段BH的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知(1-x+x27=a0+a1x+a2x2+…+a14x14.求:
(1)a0+a1+a2+…+a14
(2)a1+a3+a5+…+a13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,角A,B,C對應(yīng)的邊分別為a,b,c,若a,b,c等比,則下列結(jié)論一定正確的是( 。
A.A是銳角B.B是銳角
C.C是銳角D.△ABC是鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在網(wǎng)格狀小地圖中,一機(jī)器人從A(0,0)點出發(fā),每秒向上或向右行走1格到相應(yīng)頂點,已知向上的概率是$\frac{2}{3}$,向右的概率是$\frac{1}{3}$,問6秒后到達(dá)B(4,2)點的概率為$\frac{20}{243}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的兩個焦點與短軸的一個端點是直角三角形的3個頂點,直線l:y=-x+3與橢圓E有且只有一個公共點T.設(shè)O是坐標(biāo)原點,直線l'平行于OT,與橢圓E交于不同的兩點A、B,且與直線l交于點P.若存在常數(shù)λ,使得|PT|2=λ|PA|•|PB|,則λ=$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊答案