甲同學(xué)家到乙同學(xué)家的途中有一公園,甲從家到公園的距離與乙從家到公園的距離都是2 km,甲10時(shí)出發(fā)前往乙家.如圖所示,表示甲從家出發(fā)到達(dá)乙家為止經(jīng)過(guò)的路程y(km)與時(shí)間x(分)的關(guān)系.試寫(xiě)出y=f(x)的函數(shù)解析式.

 

 

f(x)=

 

【解析】【解析】
當(dāng)x∈[0,30],設(shè)y=k1x+b1,

由已知得

∴k1=,b1=0,y=x;

當(dāng)x∈(30,40)時(shí),y=2;

當(dāng)x∈[40,60]時(shí),設(shè)y=k2x+b2,

由已知得

∴k2=,b2=-2,y=x-2.

∴f(x)=

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-6對(duì)數(shù)與對(duì)數(shù)函數(shù)(解析版) 題型:選擇題

定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)時(shí),f(x)=2x+,則f(log220)的值為(  )

A.1 B. C.-1 D.-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-3函數(shù)的奇偶性與周期性(解析版) 題型:填空題

已知定義在R上的偶函數(shù)滿足:f(x+4)=f(x)+f(2),且當(dāng)x∈[0,2]時(shí),y=f(x)單調(diào)遞減,給出以下四個(gè)命題:

①f(2)=0;

②x=-4為函數(shù)y=f(x)圖象的一條對(duì)稱軸;

③函數(shù)y=f(x)在[8,10]上單調(diào)遞增;

④若方程f(x)=m在[-6,-2]上的兩根為x1,x2,則x1+x2=-8.

以上命題中所有正確命題的序號(hào)為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-2函數(shù)的單調(diào)性與最值(解析版) 題型:填空題

如果函數(shù)f(x)=ax2-3x+4在區(qū)間(-∞,6)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-1函數(shù)的概念、定義域和值域(解析版) 題型:解答題

設(shè)函數(shù)f(x)=,g(x)=f(x)-ax,x∈[1,3],其中a∈R,記函數(shù)g(x)的最大值與最小值的差為h(a).

(1)求函數(shù)h(a)的解析式;

(2)畫(huà)出函數(shù)y=h(x)的圖象并指出h(x)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-1函數(shù)的概念、定義域和值域(解析版) 題型:選擇題

設(shè)函數(shù)f(x)=,則不等式f(x)>f(1)的解集是(  )

A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞)

C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-12導(dǎo)數(shù)的應(yīng)用二(解析版) 題型:選擇題

已知函數(shù)f(x)=1+x-+…+,則下列結(jié)論正確的是(  )

A.f(x)在(0,1)上恰有一個(gè)零點(diǎn)

B.f(x)在(0,1)上恰有兩個(gè)零點(diǎn)

C.f(x)在(-1,0)上恰有一個(gè)零點(diǎn)

D.f(x)在(-1,0)上恰有兩個(gè)零點(diǎn)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-11導(dǎo)數(shù)的應(yīng)用一(解析版) 題型:解答題

已知函數(shù)f(x)=sinx,g(x)=mx- (m為實(shí)數(shù)).

(1)求曲線y=f(x)在點(diǎn)P(),f()處的切線方程;

(2)求函數(shù)g(x)的單調(diào)遞減區(qū)間;

(3)若m=1,證明:當(dāng)x>0時(shí),f(x)<g(x)+.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-7離散型隨機(jī)變量及分布列(解析版) 題型:解答題

乒乓球單打比賽在甲、乙兩名運(yùn)動(dòng)員間進(jìn)行,比賽采用7局4勝制(即先勝4局者獲勝,比賽結(jié)束),假設(shè)兩人在每一局比賽中獲勝的可能性相同.

(1)求甲以4比1獲勝的概率;

(2)求乙獲勝且比賽局?jǐn)?shù)多于5局的概率;

(3)求比賽局?jǐn)?shù)的分布列.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案