【題目】在棱長為的正方體中,是面對角線上兩個不同的動點.以下四個命題:①存在兩點,使;②存在兩點,使與直線都成的角;③若,則四面體的體積一定是定值;④若,則四面體在該正方體六個面上的正投影的面積的和為定值.其中為真命題的是____.

【答案】①③④

【解析】

對于①中,當(dāng)點與點重合,與點重合時,可判斷①正確;當(dāng)點點與點重合,與直線所成的角最小為,可判定②不正確;根據(jù)平面將四面體可分成兩個底面均為平面,高之和為的棱錐,可判定③正確;四面體在上下兩個底面和在四個側(cè)面上的投影,均為定值,可判定④正確.

對于①中,當(dāng)點與點重合,與點重合時,,所以①正確;

對于②中,當(dāng)點點與點重合,與直線所成的角最小,此時兩異面直線的夾角為,所以②不正確;

對于③中,設(shè)平面兩條對角線交點為,可得平面,

平面將四面體可分成兩個底面均為平面,高之和為的棱錐,

所以四面體的體積一定是定值,所以③正確;

對于④中,四面體在上下兩個底面上的投影是對角線互相垂直且對角線長度均為1的四邊形,其面積為定義,

四面體在四個側(cè)面上的投影,均為上底為,下底和高均為1的梯形,其面積為定值,

故四面體在該正方體六個面上的正投影的面積的和為定值,所以④正確.

故答案為:①③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(1)求橢圓的方程;

(2)如圖,過定點的直線交橢圓兩點,連接并延長交,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)的兩個零點為

1)求的單調(diào)區(qū)間;

2)若的極小值為,求在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為抗擊“新冠肺炎”,全國各地“停課不停學(xué)”,各學(xué)校都開展了在線課堂,組織學(xué)生在線學(xué)習(xí),并自主安排時間完成相應(yīng)作業(yè)為了解學(xué)生的學(xué)習(xí)效率,某在線教育平臺統(tǒng)計了部分高三備考學(xué)生每天完成數(shù)學(xué)作業(yè)所需的平均時間,繪制了如圖所示的頻率分布直方圖.

1)如果學(xué)生在完成在線課程后每天平均自主學(xué)習(xí)時間(完成各科作業(yè)及其他自主學(xué)習(xí))為小時,估計高三備考學(xué)生每天完成數(shù)學(xué)作業(yè)的平均時間占自主學(xué)習(xí)時間的比例(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表)(結(jié)果精確到);

2)以統(tǒng)計的頻率作為概率,估計一個高三備考學(xué)生每天完成數(shù)學(xué)作業(yè)的平均時間不超過分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)在點處的切線方程;

2)討論函數(shù)的極值點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音、短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪140位市民進行調(diào)查,其中每天玩微信超過6小時的用戶稱為微信控,否則稱其為非微信控, 調(diào)查結(jié)果統(tǒng)計如下:

微信控

非微信控

合計

女性

60

男性

30

合計

70

140

1)根據(jù)以上數(shù)據(jù),把表格中的數(shù)據(jù)填寫完整;

2)利用(1)完成的表格數(shù)據(jù)回答下列問題:

①是否在犯錯誤的概率不超過0.001的前提下認(rèn)為微信控性別有關(guān);

②已知在被調(diào)查的女性微信控市民中有5位退休老人,其中2位是教師,現(xiàn)從這5位退休老人中隨機抽取2人,求至少有1位老師的概率.

附表:其中

P(K2k)

0.050

0.025

0.010

0.005

0.001

k

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市據(jù)實際情況主要采取以下四種扶貧方式:第一,以工代賑方式,指政府投資建設(shè)基礎(chǔ)設(shè)施工程,組織貧困地區(qū)群眾參加工程建設(shè)并獲得勞務(wù)報酬,第二,整村推進方式指以貧困村為具體幫扶對象,幫扶對口到村,資金安排到村,扶貧效益到戶,第三,科技扶貧方式,指組織科技人員深入貧困鄉(xiāng)村實地指導(dǎo)、技術(shù)培訓(xùn)等傳授科技知識,第四,移民搬遷方式,指對目前極少數(shù)居住在生存條件惡劣、自然資源貧乏地區(qū)的特困人口,實行自愿移民,該市為了2020年更好的完成精準(zhǔn)扶貧各項任務(wù),2020年初在全市貧困戶(分一般貧困戶和五特戶兩類)中隨機抽取了5000戶就目前的主要四種扶貧方式行了問卷調(diào)查,支持每種扶貧方式的結(jié)果如表:

調(diào)查的貧困戶

支持以工代賑戶數(shù)

支持整村推進戶數(shù)

支持科技扶貧戶數(shù)

支持移民搬遷戶數(shù)

一般貧困戶

1200

1600

200

五特戶(五保戶和特困戶)

100

100

已知在被調(diào)查的5000戶中隨機抽取一戶支持整村推進的概率為0.36.

(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的貧困戶中抽取50戶進行深入訪談,問應(yīng)在支持科技扶貧戶數(shù)中抽取多少戶?

(Ⅱ)雖然五特戶在全市的貧困戶所占比例不大,但本次調(diào)查要有意義,其中這次調(diào)查的五特戶戶數(shù)不能低于被調(diào)查總戶數(shù)的9.2%,已知,求本次調(diào)查有意義的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, ,角的平分線于點,設(shè).(1)求;(2)若,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)討論函數(shù)的極值;

2)若為整數(shù),,且,不等式成立,求整數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊答案