8.若(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則a0+a2+a4=121.

分析 在所給的式子中,分別令x=1、x=-1,可得則a0+a2+a4的值.

解答 解:令x=1,則${a_0}+{a_1}+{a_2}+{a_3}+{a_4}+{a_5}={3^5}$;
再令x=-1,則a0-a1+a2-a3+a4-a5=-1,
∴${a_0}+{a_2}+{a_4}=\frac{{{3^5}-1}}{2}=121$,
故答案為:121.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點(diǎn),通過給二項(xiàng)式的x賦值,求展開式的系數(shù)和,可以簡(jiǎn)便的求出答案,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.過圓x2+y2-8x-2y+8=0內(nèi)一點(diǎn)P(3,-1)的最長(zhǎng)弦,最短弦所在的直線方程式分別是( 。
A.x-y-4=0,2x-y-7=0B.2x+y-5=0,x-2y-5=0
C.x-2y-1=0,2x-y-7=0D.2x-y-7=0,x+2y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$過點(diǎn)(3,2),當(dāng)a2+b2取得最小值時(shí),橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{(a+3)^{2}}$=1(a>0)的一條漸近線方程為y=2x,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某幾何體的三視圖如圖所示,則其表面積為( 。
A.B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)若直線l的極坐標(biāo)方程是$2ρsin({θ+\frac{π}{3}})=3\sqrt{3}$,射線$OM:θ=\frac{π}{3}$與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q.求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn)F到E的漸近線的距離為$\sqrt{3}a$,則E的離心率是(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則其表面積為( 。
A.$12+2\sqrt{2}$B.$8+2\sqrt{2}$C.$4+4\sqrt{2}$D.$8+4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$\overrightarrow{a}$=(2+sin x,1),$\overrightarrow$=(2,-2),$\overrightarrow{c}$=(sin x-3,1),$\overrightarrowaduhube$=(1,k)(x∈R,k∈R).
(1)若x∈[-$\frac{π}{2}$,$\frac{π}{2}$],且$\overrightarrow{a}$∥($\overrightarrow$+$\overrightarrow{c}$),求x的值;
(2)若函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,求f(x)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案