【題目】某電子公司開發(fā)一種智能手機的配件,每個配件的成本是15元,銷售價是20元,月平均銷售件,通過改進工藝,每個配件的成本不變,質(zhì)量和技術(shù)含金量提高,市場分析的結(jié)果表明,如果每個配件的銷售價提高的百分率為,那么月平均銷售量減少的百分率為,記改進工藝后電子公司銷售該配件的月平均利潤是(元).

(1)寫出的函數(shù)關(guān)系式;

(2)改進工藝后,試確定該智能手機配件的售價,使電子公司銷售該配件的月平均利潤最大.

【答案】(1) 的函數(shù)關(guān)系式為 ;(2) 改進工藝后,每個配件的銷售價為元時,該電子公司銷售該配件的月平均利潤最大.

【解析】試題分析:(I)由題易知每件產(chǎn)品的銷售價為,則月平均銷售量為a件,利潤則是二者的積去掉成本即可.

(II)由(1)可知,利潤函數(shù)是一元三次函數(shù)關(guān)系,可以對其求導解出其最值.

試題解析:

(I)改進工藝后,每個配件的銷售價為,月平均銷售量為件,

則月平均利潤(元),

的函數(shù)關(guān)系式為

(II)由(舍)

; ,

函數(shù)取得最大值,

故改進工藝后,每個配件的銷售價為元時,

該電子公司銷售該配件的月平均利潤最大.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線 與圓 )相交于、、四個點.

(Ⅰ)求的取值范圍;

(Ⅱ)當四邊形的面積最大時,求對角線的交點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面 側(cè)面1 ,

(Ⅰ)求證: ;

(Ⅱ)求三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1)且與x軸有唯一的交點(﹣1,0). (Ⅰ)求f(x)的表達式;
(Ⅱ)在(Ⅰ)的條件下,設函數(shù)F(x)=f(x)﹣mx,若F(x)在區(qū)間[﹣2,2]上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
(Ⅲ)設函數(shù)g(x)=f(x)﹣kx,x∈[﹣2,2],記此函數(shù)的最小值為h(k),求h(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個質(zhì)地均勻的正四面體的四個面上分別標示著數(shù)字1,2,3,4,一個質(zhì)地均勻的骰子(正方體)的六個面上分別標示數(shù)字1,2,3,4,5,6,先后拋擲一次正四面體和骰子.

(1)列舉出全部基本事件;

(2)求被壓在底部的兩個數(shù)字之和小于5的概率;

(3)求正四面體上被壓住的數(shù)字不小于骰子上被壓住的數(shù)字的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,已知曲線的參數(shù)方程為為參數(shù),).

(Ⅰ)當時,若曲線上存在兩點關(guān)于點成中心對稱,求直線的參數(shù)方程;

(Ⅱ)在以原點為極點,軸正半軸為極軸的極坐標系中,極坐標方程為的直線與曲線相交于兩點,若,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左焦點為,設是橢圓的兩個短軸端點,是橢圓的長軸左端點.

(Ⅰ)當時,設點,直線交橢圓,且直線的斜率分別為,求的值;

(Ⅱ)當時,若經(jīng)過的直線與橢圓交于兩點,O為坐標原點,求的面積之差的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), )為奇函數(shù),且相鄰兩對稱軸間的距離為.

(1)當時,求的單調(diào)遞減區(qū)間;

(2)將函數(shù)的圖象沿軸方向向右平移個單位長度,再把橫坐標縮短到原來的(縱坐標不變),得到函數(shù)的圖象.當時,求函數(shù)的值域.

查看答案和解析>>

同步練習冊答案