【題目】如圖,三棱柱中,側(cè)面 側(cè)面1, , .
(Ⅰ)求證: ;
(Ⅱ)求三棱錐的側(cè)面積.
【答案】(1)見解析;(2).
【解析】試題分析:(Ⅰ)取中點,連結(jié), ,推導(dǎo)出, , ,從而平面,由此能證明結(jié)論;(Ⅱ)在平行四邊形中,過作于點,過作于點,則為矩形,推導(dǎo)出, ,由此能求出三棱錐的側(cè)面積.
試題解析:(Ⅰ)取中點,連結(jié), ,
∵, ,∴為正三角形,
∴, ,
又側(cè)面側(cè)面,面面, 面,
∴平面,
又平面,∴,
在中,∵, , ,
∴,解得,
∴,∴,
又, 平面, 平面,
∴平面,
∵平面,∴.
(Ⅱ)依題意, ,
在平行四邊形中,過作于點,
過作于點,則為矩形,∴,
由(1)知平面, 平面,
∴,
∵, , 平面, 平面,
∴平面,∵平面,
∴,
∵,
在中, , ,
∴,
∴,
∴三棱錐的側(cè)面積.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為﹣4,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知以點A(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過點B(-2,0)的動直線l與圓A相交于M,N兩點,Q是MN的中點.
(1)求圓A的方程;
(2)當|MN|=2時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在多面體中,四邊形與四邊形均為邊長為2的正方形,為等腰直角三角形,,且平面平面,平面平面.
(1)求證:平面平面;
(2)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中, , , 分別為棱的中點.
(1)在平面內(nèi)過點作平面交于點,并寫出作圖步驟,但不要求證明.
(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 是定義在(﹣1,1)上是奇函數(shù),且 .
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電子公司開發(fā)一種智能手機的配件,每個配件的成本是15元,銷售價是20元,月平均銷售件,通過改進工藝,每個配件的成本不變,質(zhì)量和技術(shù)含金量提高,市場分析的結(jié)果表明,如果每個配件的銷售價提高的百分率為,那么月平均銷售量減少的百分率為,記改進工藝后電子公司銷售該配件的月平均利潤是(元).
(1)寫出與的函數(shù)關(guān)系式;
(2)改進工藝后,試確定該智能手機配件的售價,使電子公司銷售該配件的月平均利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 “中國人均讀書4.3本(包括網(wǎng)絡(luò)文學和教科書),比韓國的11本、法國的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書最少的國家!边@個論斷被各種媒體反復(fù)引用。出現(xiàn)這樣的統(tǒng)計結(jié)果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國傳統(tǒng)文明古國、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準備購進一定量的書籍豐富小區(qū)圖書站,由于年齡段不同需看不同類型的書籍,為了合理配備資源,對小區(qū)內(nèi)看書人員進行了年齡的調(diào)查,隨機抽取了一天中名讀書者進行調(diào)查,將他們的年齡分成6段:,,,,,后得到如圖所示的頻率分布直方圖.問:
(Ⅰ)求40名讀書者中年齡分布在的人數(shù);
(Ⅱ)求40名讀書者年齡的眾數(shù)和中位數(shù)的估計值;(用各組區(qū)間中點值作代表)
(Ⅲ)若從年齡在的讀書者中任取2名,求這兩名讀書者中年齡在恰有1人的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com