【題目】給出下列四個(gè)命題:①有的質(zhì)數(shù)是偶數(shù);②存在正整數(shù),使得的約數(shù);③有的三角形三個(gè)內(nèi)角成等差數(shù)列;④與給定的圓只有一個(gè)公共點(diǎn)的直線是圓的切線.其中既是存在性命題又是真命題的個(gè)數(shù)為( )

A.B.C.D.

【答案】C

【解析】

根據(jù)存在性命題的定義進(jìn)行判斷即可.

①:因?yàn)?既是質(zhì)數(shù)又是偶數(shù),其他偶數(shù)都不是質(zhì)數(shù),所以本命題既是存在性命題又是真命題;

②:因?yàn)?和29都是29的約數(shù),其他正整數(shù)都不是29的約數(shù),所以本命題既是存在性命題又是真命題;

③:因?yàn)楫?dāng)三角形一個(gè)內(nèi)角為,則三個(gè)內(nèi)角成等差數(shù)列,所以本命題既是存在性命題又是真命題;

④:因?yàn)槿魏闻c給定的圓只有一個(gè)公共點(diǎn)的直線就是圓的切線,所以本命題是全稱命題不是特稱命題,也就是不是存在性命題,因此共有3個(gè)命題既是存在性命題又是真命題.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,短軸的兩個(gè)端點(diǎn)分別為,點(diǎn)在橢圓上,且滿足,當(dāng)變化時(shí),給出下列三個(gè)命題:

①點(diǎn)的軌跡關(guān)于軸對稱;②的最小值為2;

③存在使得橢圓上滿足條件的點(diǎn)僅有兩個(gè),

其中,所有正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),長軸均為且在軸上,短軸長分別為,過原點(diǎn)且不與軸重合的直線,的四個(gè)交點(diǎn)按縱坐標(biāo)從大到小依次為,記,的面積分別為.

1)當(dāng)直線軸重合時(shí),若,求的值;

2)當(dāng)變化時(shí),是否存在與坐標(biāo)軸不重合的直線,使得?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】絕大部分人都有患呼吸系統(tǒng)疾病的經(jīng)歷,現(xiàn)在我們調(diào)查患呼吸系統(tǒng)疾病是否和所處環(huán)境有關(guān).一共調(diào)查了人,患有呼吸系統(tǒng)疾病的人,其中人在室外工作,人在室內(nèi)工作.沒有患呼吸系統(tǒng)疾病的人,其中人在室外工作,人在室內(nèi)工作.

1)現(xiàn)采用分層抽樣從室內(nèi)工作的居民中抽取一個(gè)容量為的樣本,將該樣本看成一個(gè)總體,從中隨機(jī)的抽取兩人,求兩人都有呼吸系統(tǒng)疾病的概率.

2)你能否在犯錯誤率不超過的前提下認(rèn)為感染呼吸系統(tǒng)疾病與工作場所有關(guān);

附表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).

(1)求的直角坐標(biāo)方程;

(2)若曲線截直線所得線段的中點(diǎn)坐標(biāo)為,求的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,左右焦點(diǎn)分別為,,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為1.

(1)求橢圓的方程;

(2)過 的直線與橢圓交于不同的兩點(diǎn),,則的面積是否存在最大值?若存在,求出這個(gè)最大值及直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性.

(Ⅱ)若時(shí),存在兩個(gè)正實(shí)數(shù)滿足,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),單調(diào)遞增,,若對任意,存在,使得成立,則稱上的“追逐函數(shù)”.若,則下列四個(gè)命題:①上的“追逐函數(shù)”;②若上的“追逐函數(shù)”,則;③上的“追逐函數(shù)”;④當(dāng)時(shí),存在,使得上的“追逐函數(shù)”.其中正確命題的個(gè)數(shù)為( )

A. ①③B. ②④C. ①④D. ②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是年我國就業(yè)人口及勞動年齡人口(勞動年齡人口包含就業(yè)人口)統(tǒng)計(jì)表:

時(shí)間(年)

就業(yè)人口(萬人)

勞動年齡人口(萬人)

則由表可知(

A.年我國就業(yè)人口逐年減少

B.年我國勞動年齡人口逐年增加

C.年這年我國就業(yè)人口數(shù)量的中位數(shù)為

D.年我國勞動年齡人口中就業(yè)人口所占比重逐年增加

查看答案和解析>>

同步練習(xí)冊答案