【題目】下表是年我國(guó)就業(yè)人口及勞動(dòng)年齡人口(勞動(dòng)年齡人口包含就業(yè)人口)統(tǒng)計(jì)表:
時(shí)間(年) | |||||||
就業(yè)人口(萬人) | |||||||
勞動(dòng)年齡人口(萬人) |
則由表可知( )
A.年我國(guó)就業(yè)人口逐年減少
B.年我國(guó)勞動(dòng)年齡人口逐年增加
C.年這年我國(guó)就業(yè)人口數(shù)量的中位數(shù)為
D.年我國(guó)勞動(dòng)年齡人口中就業(yè)人口所占比重逐年增加
【答案】D
【解析】
根據(jù)表格中數(shù)據(jù)就業(yè)人口和勞動(dòng)年齡人口數(shù)的變化可判斷A、B選項(xiàng)的正誤;根據(jù)表格中的數(shù)據(jù)可得出年這年我國(guó)就業(yè)人口數(shù)量的中位數(shù),可判斷C選項(xiàng)的正誤;利用表格中的數(shù)據(jù)計(jì)算出年我國(guó)勞動(dòng)年齡人口中就業(yè)人口所占比重,可判斷D選項(xiàng)的正誤.
由表格中的數(shù)據(jù)可知,年我國(guó)就業(yè)人口逐年增加,勞動(dòng)年齡人口逐年減少,A、B選項(xiàng)均錯(cuò)誤;
將年這年我國(guó)就業(yè)人口數(shù)量由小到大依次排列為:、、、、、、,中位數(shù)為,C選項(xiàng)錯(cuò)誤;
年我國(guó)勞動(dòng)年齡人口中就業(yè)人口所占比重如下表所示:
時(shí)間(年) | |||||||
勞動(dòng)年齡人口中就業(yè)人口所占比重 |
由上表可知,年我國(guó)勞動(dòng)年齡人口中就業(yè)人口所占比重逐年增加,D選項(xiàng)正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:①有的質(zhì)數(shù)是偶數(shù);②存在正整數(shù),使得為的約數(shù);③有的三角形三個(gè)內(nèi)角成等差數(shù)列;④與給定的圓只有一個(gè)公共點(diǎn)的直線是圓的切線.其中既是存在性命題又是真命題的個(gè)數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z=a2-a-6+i,分別求出滿足下列條件的實(shí)數(shù)a的值:
(1)z是實(shí)數(shù);
(2)z是虛數(shù);
(3)z是0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形是邊長(zhǎng)為2的菱形,,為的中點(diǎn),以為折痕將折起到的位置,使得平面平面,如圖2.
(1)證明:平面平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的上、下、左、右四個(gè)頂點(diǎn)分別為x軸正半軸上的某點(diǎn)滿足.
(1)求橢圓的方程;
(2)設(shè)該橢圓的左、右焦點(diǎn)分別為,點(diǎn)在圓上,且在第一象限,過作圓的切線交橢圓于,求證:△的周長(zhǎng)是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,已知每售出一箱酸奶的利潤(rùn)為50元,當(dāng)天未售出的酸奶降價(jià)處理,以每箱虧損10元的價(jià)格全部處理完.若供不應(yīng)求,可從其它商店調(diào)撥,每銷售1箱可獲利30元.假設(shè)該超市每天的進(jìn)貨量為14箱,超市的日利潤(rùn)為y元.為確定以后的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了最近50天銷售該酸奶的市場(chǎng)日需求量,其頻率分布表如圖所示.
(1)求的值;
(2)求y關(guān)于日需求量的函數(shù)表達(dá)式;
(3)以50天記錄的酸奶需求量的頻率作為酸奶需求量發(fā)生的概率,估計(jì)日利潤(rùn)在區(qū)間[580,760]內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,是不共面的三個(gè)向量,則能構(gòu)成一個(gè)基底的一組向量是( 。
A. 2,﹣,+2 B. 2,﹣,+2
C. ,2,﹣ D. ,+,﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.
(1)求角B的大小;
(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三國(guó)時(shí)期著名的數(shù)學(xué)家劉徽對(duì)推導(dǎo)特殊數(shù)列的求和公式很感興趣,創(chuàng)造并發(fā)展了許多算法,展現(xiàn)了聰明才智.他在《九章算術(shù)》“盈不足”章的第19題的注文中給出了一個(gè)特殊數(shù)列的求和公式.這個(gè)題的大意是:一匹良馬和一匹駑馬由長(zhǎng)安出發(fā)至齊地,長(zhǎng)安與齊地相距3000里(1里=500米),良馬第一天走193里,以后每天比前一天多走13里.駑馬第一天走97里,以后每天比前一天少走半里.良馬先到齊地后,馬上返回長(zhǎng)安迎駑馬,問兩匹馬在第幾天相遇( )
A. 14天B. 15天C. 16天D. 17天
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com