19.設(shè)全集U=R,集合A={x|x2<1},B={x|x2-2x>0},則A∩(∁RB)=[0,1).

分析 求出集合A,B,利用集合的基本運(yùn)算即可得到結(jié)論.

解答 解:集合A={x|x2<1}=(-1,1),B={x|x2-2x>0}=(-∞,0)∪(2,+∞),
即∁RB=[0,2],
故A∩(∁RB)=[0,1)
故答案為:[0,1).

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,求出集合A,B的元素是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.將向量$\overrightarrow{n}$=(1,-2)按向量$\overrightarrow{a}$=(1,-1)平移得到向量$\overrightarrow{m}$,則$\overrightarrow{m}$的模|$\overrightarrow{m}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,a+$\frac{1}{a}$=4cosC,b=1.
(I)若A=90°,求△ABC的面積;
(Ⅱ)若△ABC的面積為$\frac{\sqrt{3}}{2}$,求a,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$g(x)=\frac{{{4^x}-a}}{2^x}$是奇函數(shù),f(x)=lg(10x+1)+bx是偶函數(shù).
(1)求a+b的值.
(2)若對(duì)任意的t∈[0,+∞),不等式g(t2-2t)+g(2t2-k)>0恒成立,求實(shí)數(shù)k的取值范圍.
(3)設(shè)$h(x)=f(x)+\frac{1}{2}x$,若存在x∈(-∞,1],使不等式g(x)>h[lg(10a+9)]成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y≥0}\\{x≤1}\\{x-2y≥0}\end{array}\right.$,則|x|+|y|的取值范圍是[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.要做一個(gè)圓錐形的漏斗,其母線長(zhǎng)為40cm,要使其體積為最大,則高為$\frac{20\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知圓O:x2+y2=r2與圓C:(x-2)2+y2=r2(r>0)在第一象限的一個(gè)公共點(diǎn)為P,過P作與x軸平行的直線分別交兩圓于不同兩點(diǎn)A,B(異于P點(diǎn)),且OA⊥OB,則直線OP的斜率是$\sqrt{3}$,r=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知菱形ABCD,若|$\overrightarrow{AB}$|=1,A=$\frac{π}{3}$,則向量$\overrightarrow{AC}$在$\overrightarrow{AB}$上的投影為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.A,B,C三個(gè)集合,若A?B∪C,則有(  )成立.
A.若x$\overline{∈}$B∪C,則x$\overline{∈}$AB.若x∈A,則x∈B∩CC.若x∈A,則x∈CD.若x∈A,則x∈B

查看答案和解析>>

同步練習(xí)冊(cè)答案