分析 (Ⅰ)設(shè)D為BC的中點(diǎn),連結(jié)AD,DP,證明平面PBC⊥平面ABC,只需證明PD⊥平面ABC,;
(Ⅱ)由(Ⅰ)PD⊥平面ABC,所以VP-ABC=$\frac{1}{3}{S}_{△ABC}×PD$,即可求出三棱錐P-ABC的體積.
解答 (Ⅰ)證明:設(shè)D為BC的中點(diǎn),連結(jié)AD,DP.
因?yàn)锳D⊥AC,所以DA=DB=DC.
因?yàn)镻A=PB=PC,所以△PAD≌△PBD≌△PCD,
所以∠PDA=∠PDB=∠PDC=90°,
即PD⊥平面ABC
因?yàn)镻D?平面PBC,
所以平面PBC⊥平面ABC.…(6分)
(Ⅱ)解:由(Ⅰ)PD⊥平面ABC
所以VP-ABC=$\frac{1}{3}{S}_{△ABC}×PD$=$\frac{1}{3}×\frac{1}{2}×2\sqrt{3}×2×\sqrt{9-4}$=$\frac{2\sqrt{15}}{3}$.…(12分)
點(diǎn)評(píng) 本題考查面面垂直,考查三棱錐P-ABC的體積,考查學(xué)生分析解決問(wèn)題的能力,正確運(yùn)用面面垂直的判定定理是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | $-\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | φ=$\frac{k}{2}$π+$\frac{π}{4}$,k∈Z | B. | φ=$\frac{k}{2}$π-$\frac{π}{8}$,k∈Z | C. | φ=kπ+$\frac{π}{4}$,k∈Z | D. | φ=kπ-$\frac{π}{8}$,k∈Z |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com