16.在△ABC中,已知cos$\frac{A+B}{2}$=$\frac{3}{5}$,則$cos\frac{C}{2}$=( 。
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

分析 已知等式左邊中的角度變形后,利用誘導(dǎo)公式化簡求出sin$\frac{C}{2}$的值,利用同角三角函數(shù)間的基本關(guān)系求出cos$\frac{C}{2}$的值即可.

解答 解:∵△ABC中,A+B+C=π,即$\frac{A+B}{2}$=$\frac{π}{2}$-$\frac{C}{2}$,
∴cos$\frac{A+B}{2}$=cos($\frac{π}{2}$-$\frac{C}{2}$)=sin$\frac{C}{2}$=$\frac{3}{5}$,
∵C為三角形內(nèi)角,
∴0<$\frac{C}{2}$<$\frac{π}{2}$,
則cos$\frac{C}{2}$=$\sqrt{1-si{n}^{2}\frac{C}{2}}$=$\frac{4}{5}$.
故選:D.

點(diǎn)評 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè){$\overrightarrow{i}$、$\overrightarrow{j}$,$\overrightarrow{k}$}是單位正交基底,已知向量$\overrightarrow{p}$在基底{$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$}下的坐標(biāo)為(8,6,4),其中$\overrightarrow{a}$=$\overrightarrow{i}$+$\overrightarrow{j}$,$\overrightarrow$=$\overrightarrow{j}$+$\overrightarrow{k}$,$\overrightarrow{c}$=$\overrightarrow{k}$+$\overrightarrow{i}$則向量$\overrightarrow{p}$在基底{$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$}下的坐標(biāo)是( 。
A.(12,14,10)B.(10,12,14)C.(14,12,10)D.(4,3,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an},Sn是{an}的前n項(xiàng)和,且Sn=n2,則數(shù)列{an}的通項(xiàng)an=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.?dāng)?shù)列{an}中,a1=a,an+an+1=3,記數(shù)列{an}的前n項(xiàng)和為Sn,若Sk=2013,則k=1342.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱錐P-ABC中,AB⊥AC,PA=PB=PC=3,AB=2$\sqrt{3}$,AC=2,
(Ⅰ)求證:平面PBC⊥平面ABC;
(Ⅱ)求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}的前n項(xiàng)和為Sn,an≠0(n∈N*),anan+1=Sn,則a3-a1=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,則至多有一件一等品的概率是( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{7}{10}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.解下列不等式:
(1)|x2-2x|>3
(2)0<|x-2|+x<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=-3x-1,則f′(x)=( 。
A.0B.3C.-3D.-3x

查看答案和解析>>

同步練習(xí)冊答案