若動圓過定點A(-3,0)且和定圓(x-3)2+y2=4外切,則動圓圓心P的軌跡為( 。
A.雙曲線B.橢圓C.拋物線D.雙曲線一支
設(shè)動圓的半徑為R,
∵動圓圓心為P,點A在動圓上,∴|PA|=R
又∵定圓(x-3)2+y2=4的圓心為B(3,0),半徑為2,
定圓與動圓P相外切
∴圓心距|PB|=R+2
由此可得|PB|-|PA|=(R+2)-R=2(常數(shù)),
∴點P的軌跡是以A、B為焦點的雙曲線的左支
故選:D
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

若在曲線f(x,y)=0上兩個不同點處的切線重合,則稱這條切線為曲線f(x,y)=0的“自公切線”.下列方程:
①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
|x|+1=
4-y2

對應的曲線中存在“自公切線”的有______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,A(-1,0),B(1,0),過曲線C1:y=x2-1(|x|≥1)上一點M的切線l,與曲線C2:y=-
m(1-x2)
(|x|<1)
也相切于點N,記點M的橫坐標為t(t>1).
(1)用t表示m的值和點N的坐標;
(2)當實數(shù)m取何值時,∠MAB=∠NAB?并求此時MN所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

拋物線的頂點在原點O,焦點為橢圓
x2
3
+
y2
2
=1的右焦點F.
(1)求拋物線的方程;
(2)設(shè)點P在拋物線上運動,求P到直線y=x+3的距離的最小值,并求此時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(2,0),且離心率為
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點N(
2
,0)且斜率為
6
3
的直線l與橢圓C交于A,B兩點,求證:
OA
OB
=0.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,從橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
上一點P向x軸作垂線,垂足恰為左焦點F1,又點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且ABOP,|F1A|=
10
+
5
,
(1)求橢圓E的方程.
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點C,D,且
OC
OD
?若存在,寫出該圓的方程,并求|CD|的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點為F1,F(xiàn)2,且離心率為
3
2

(1)若過F1的直線交橢圓E于P,Q兩點,且
PF1
=3
F1Q
,求直線PQ的斜率;
(2)若橢圓E過點(0,1),且過F1作兩條互相垂直的直線,它們分別交橢圓E于A,C和B,D,求四邊形ABCD面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過雙曲線
x2
3
-
y2
6
=1
的右焦點F,傾斜角為30°的直線交此雙曲線于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的兩焦點為F1(-1,0)、F2(1,0),P為橢圓上一點,且2|F1F2|=|PF1|+|PF2|.
(1)求此橢圓的方程;
(2)若點P在第二象限,∠F2F1P=120°,求△PF1F2的面積.

查看答案和解析>>

同步練習冊答案