【題目】過拋物線)的焦點(diǎn)F且斜率為的直線交拋物線C于M,N兩點(diǎn),且.
(1)求p的值;
(2)拋物線C上一點(diǎn),直線(其中)與拋物線C交于A,B兩個(gè)不同的點(diǎn)(A,B均與點(diǎn)Q不重合).設(shè)直線QA,QB的斜率分別為,.直線l是否過定點(diǎn)?如果是,請(qǐng)求出所有定點(diǎn);如果不是,請(qǐng)說明理由;
【答案】(1)(2)直線恒過定點(diǎn)
【解析】
(1)設(shè)直線,與拋物線聯(lián)立可得,利用焦點(diǎn)弦長(zhǎng)可構(gòu)造方程求得;(2)由(1)可得拋物線方程和點(diǎn)坐標(biāo);聯(lián)立直線與拋物線方程,可得和韋達(dá)定理的形式;利用兩點(diǎn)連線斜率公式表示出,代入韋達(dá)定理結(jié)果可求得,滿足,從而得到直線方程,進(jìn)而求得定點(diǎn).
(1)由題意得:,設(shè)直線方程為:
代入拋物線方程得:
設(shè),
,解得:
(2)由(1)知:拋物線
設(shè),
由得:,則
,
即: ,解得:
當(dāng)時(shí),
,恒過定點(diǎn)
直線恒過定點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,由半圓和部分拋物線合成的曲線稱為“羽毛球開線”,曲線與軸有兩個(gè)焦點(diǎn),且經(jīng)過點(diǎn)
(1)求的值;
(2)設(shè)為曲線上的動(dòng)點(diǎn),求的最小值;
(3)過且斜率為的直線與“羽毛球形線”相交于點(diǎn)三點(diǎn),問是否存在實(shí)數(shù)使得?若存在,求出的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某藝術(shù)品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側(cè)面用于藝術(shù)裝飾,如圖1.為了便于設(shè)計(jì),可將該禮品看成是由圓O及其內(nèi)接等腰三角形繞底邊上的高所在直線旋轉(zhuǎn)而成,如圖2.已知圓O的半徑為,設(shè),,圓錐的側(cè)面積為(S圓錐的側(cè)面積(R-底面圓半徑,I-母線長(zhǎng)))
(1)求S關(guān)于的函數(shù)關(guān)系式;
(2)為了達(dá)到最佳觀賞效果,要求圓錐的側(cè)面積S最大.求S取得最大值時(shí)腰的長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某游戲公司對(duì)今年新開發(fā)的一些游戲進(jìn)行評(píng)測(cè),為了了解玩家對(duì)游戲的體驗(yàn)感,研究人員隨機(jī)調(diào)查了300名玩家,對(duì)他們的游戲體驗(yàn)感進(jìn)行測(cè)評(píng),并將所得數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中.
(1)求這300名玩家測(cè)評(píng)分?jǐn)?shù)的平均數(shù);
(2)由于該公司近年來(lái)生產(chǎn)的游戲體驗(yàn)感較差,公司計(jì)劃聘請(qǐng)3位游戲?qū)<覍?duì)游戲進(jìn)行初測(cè),如果3人中有2人或3人認(rèn)為游戲需要改進(jìn),則公司將回收該款游戲進(jìn)行改進(jìn);若3人中僅1人認(rèn)為游戲需要改進(jìn),則公司將另外聘請(qǐng)2位專家二測(cè),二測(cè)時(shí),2人中至少有1人認(rèn)為游戲需要改進(jìn)的話,公司則將對(duì)該款游戲進(jìn)行回收改進(jìn).已知該公司每款游戲被每位專家認(rèn)為需要改進(jìn)的概率為,且每款游戲之間改進(jìn)與否相互獨(dú)立.
(i)對(duì)該公司的任意一款游戲進(jìn)行檢測(cè),求該款游戲需要改進(jìn)的概率;
(ii)每款游戲聘請(qǐng)專家測(cè)試的費(fèi)用均為300元/人,今年所有游戲的研發(fā)總費(fèi)用為50萬(wàn)元,現(xiàn)對(duì)該公司今年研發(fā)的600款游戲都進(jìn)行檢測(cè),假設(shè)公司的預(yù)算為110萬(wàn)元,判斷這600款游戲所需的最高費(fèi)用是否超過預(yù)算,并通過計(jì)算說明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩企業(yè)生產(chǎn)同一種型號(hào)零件,按規(guī)定該型號(hào)零件的質(zhì)量指標(biāo)值落在內(nèi)為優(yōu)質(zhì)品.從兩個(gè)企業(yè)生產(chǎn)的零件中各隨機(jī)抽出了件,測(cè)量這些零件的質(zhì)量指標(biāo)值,得結(jié)果如下表:
甲企業(yè):
分組 | |||||||
頻數(shù) | 5 |
乙企業(yè):
分組 | |||||||
頻數(shù) | 5 | 5 |
(1)已知甲企業(yè)的件零件質(zhì)量指標(biāo)值的樣本方差,該企業(yè)生產(chǎn)的零件質(zhì)量指標(biāo)值X服從正態(tài)分布,其中μ近似為質(zhì)量指標(biāo)值的樣本平均數(shù)(注:求時(shí),同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),近似為樣本方差,試根據(jù)企業(yè)的抽樣數(shù)據(jù),估計(jì)所生產(chǎn)的零件中,質(zhì)量指標(biāo)值不低于的產(chǎn)品的概率.(精確到)
(2)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為兩個(gè)企業(yè)生產(chǎn)的零件的質(zhì)量有差異.
甲廠 | 乙廠 | 總計(jì) | |
優(yōu)質(zhì)品 | |||
非優(yōu)質(zhì)品 | |||
總計(jì) |
附:
參考數(shù)據(jù):,
參考公式:若,則,
,;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓和焦點(diǎn)為F的拋物線上一點(diǎn),M是上,當(dāng)點(diǎn)M在時(shí),取得最小值,當(dāng)點(diǎn)M在時(shí),取得最大值,則
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體中,.
(1)求證:平面ABCD;
(2)若,點(diǎn)F在EC上,且滿足EF=2FC,求二面角F—AD—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十九世紀(jì)末:法國(guó)學(xué)者貝特朗在研究幾何概型時(shí)提出了“貝特朗悖論”,即“在一個(gè)圓內(nèi)任意選一條弦,這條弦的弦長(zhǎng)長(zhǎng)于這個(gè)圓的內(nèi)接等邊三角形邊長(zhǎng)的概率是多少?”貝特朗用“隨機(jī)半徑”“隨機(jī)端點(diǎn)”“隨機(jī)中點(diǎn)”三個(gè)合理的求解方法,但結(jié)果都不相同.該悖論的矛頭直擊概率概念本身,強(qiáng)烈地刺激了概率論基礎(chǔ)的嚴(yán)格化.已知“隨機(jī)端點(diǎn)”的方法如下:設(shè)為圓上一個(gè)定點(diǎn),在圓周上隨機(jī)取一點(diǎn),連接,所得弦長(zhǎng)大于圓的內(nèi)接等邊三角形邊長(zhǎng)的概率.則由“隨機(jī)端點(diǎn)”求法所求得的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中,若是的三條邊長(zhǎng),則下列結(jié)論中正確的是( )
①存在,使、、不能構(gòu)成一個(gè)三角形的三條邊
②對(duì)一切,都有
③若為鈍角三角形,則存在,使
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com