【題目】已知圓和焦點(diǎn)為F的拋物線上一點(diǎn),M上,當(dāng)點(diǎn)M時,取得最小值,當(dāng)點(diǎn)M時,取得最大值,則

A.B.C.D.

【答案】D

【解析】

根據(jù)拋物線的定義和三角形中兩邊之差小于第三邊轉(zhuǎn)化,當(dāng)且僅當(dāng)三點(diǎn)共線,且點(diǎn)N在線段上時等號成立,求得點(diǎn)的坐標(biāo),再根據(jù)三角形中兩邊之差小于第三邊轉(zhuǎn)化,當(dāng)且僅當(dāng)M為線段的延長線與拋物線的交點(diǎn),且點(diǎn)N在線段上時等號成立,求得的坐標(biāo),從而求出,得解.

由已知得:,記的準(zhǔn)線為l,如圖,過點(diǎn)Ml的垂線,垂足為D,過點(diǎn)l的垂線,垂中為,則,

當(dāng)且僅當(dāng)三點(diǎn)共線,且點(diǎn)N在線段上時等號成立,此時取得最小值,

則點(diǎn)的坐標(biāo)為,

,

當(dāng)且僅當(dāng)M為線段的延長線與拋物線的交點(diǎn),且點(diǎn)N在線段上時等號成立,此時取得最大值,

又直線的方程為,由,解得,或,

所以的坐標(biāo)為

所以,

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)若直線與曲線交于,兩點(diǎn),且,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:我羊食半馬.馬主曰:我馬食半牛.今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:我羊所吃的禾苗只有馬的一半.馬主人說:我馬所吃的禾苗只有牛的一半.打算按此比例償還,他門各應(yīng)償還多少?該問題中,1斗為10升,則羊主人應(yīng)償還多少升粟?(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行象棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨(dú)立.

1)求甲在4局以內(nèi)(含4局)贏得比賽的概率;

2)用X表示比賽決出勝負(fù)時的總局?jǐn)?shù),求隨機(jī)變量X的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線)的焦點(diǎn)F且斜率為的直線交拋物線CM,N兩點(diǎn),且

1)求p的值;

2)拋物線C上一點(diǎn),直線(其中)與拋物線C交于A,B兩個不同的點(diǎn)(A,B均與點(diǎn)Q不重合).設(shè)直線QA,QB的斜率分別為,.直線l是否過定點(diǎn)?如果是,請求出所有定點(diǎn);如果不是,請說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某個機(jī)械零件是由兩個有公共底面的圓錐組成的,且這兩個圓錐有公共點(diǎn)的母線互相垂直,把這個機(jī)械零件打磨成球形,該球的半徑最大為1,設(shè)這兩個圓錐的高分別為,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的公差不為0,其前項(xiàng)和為,且,,成等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式及的最小值;

2)若數(shù)列是等差數(shù)列,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)(x∈R)滿足f(1+x)=f(1-x)且x∈[-1,1]時,f(x)=1-x2,函數(shù)g(x)=則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點(diǎn)的個數(shù)為

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面平面,其中為矩形,為梯形,,,.

(Ⅰ)求證:平面;

(Ⅱ)若二面角的平面角的余弦值為,求的長.

查看答案和解析>>

同步練習(xí)冊答案