精英家教網 > 高中數學 > 題目詳情
計算機考試分理論考試與上機操作考試兩部分進行,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”則計算機考試“合格”并頒發(fā)“合格證書”。甲、乙、丙三人在理論考試中合格的概率分別為,;在上機操作考試中合格的概率分別為,,。所有考試是否合格相互之間沒有影響。
(1)甲、乙、丙三人在同一次計算機考試中誰獲得“合格證書”可能性最大?
(2)求這三人計算機考試都獲得“合格證書”的概率;
(3)用ξ表示甲、乙、丙三人在理論考核中合格人數,求ξ的分布列和數學期望Eξ。
解:記“甲理論考試合格”為事件,“乙理論考試合格”為事件,“丙理論考試合格”為事件, 記的對立事件,;記“甲上機考試合格”為事件,“乙上機考試合格”為事件,“丙上機考試合格”為事件。
(1)記“甲計算機考試獲得合格證書”為事件A,記“乙計算機考試獲得合格證書”為事件B,記“丙計算機考試獲得合格證書”為事件C,則




故乙獲得“合格證書”可能性最大。
(2)記“三人該課程考核都合格” 為事件D



=
所以,這三人該課程考核都合格的概率為。
(3)用表示甲、乙、丙三人在理論考核中合格人數,則可以取0,1,2,3,故的分布列如下:

的數學期望:。
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

計算機考試分理論考試與上機操作考試兩部分進行,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”則計算機考試“合格”并頒發(fā)“合格證書”.甲、乙、丙三人在理論考試中合格的概率分別為
3
5
,
3
4
2
3
;在上機操作考試中合格的概率分別為
9
10
,
5
6
7
8
.所有考試是否合格相互之間沒有影響.
(1)甲、乙、丙三人在同一次計算機考試中誰獲得“合格證書”可能性最大?
(2)求這三人計算機考試都獲得“合格證書”的概率;
(3)用ξ表示甲、乙、丙三人在理論考核中合格人數,求ξ的分布列和數學期望Eξ.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•順義區(qū)一模)計算機考試分理論考試與實際操作考試兩部分進行,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”者,則計算機考試“合格”并頒發(fā)“合格證書”.甲、乙、丙三人在理論考試中“合格”的概率依次為:
4
5
、
3
4
、
2
3
,在實際操作考試中“合格”的概率依次為:
1
2
、
2
3
、
5
6
,所有考試是否合格相互之間沒有影響.
(Ⅰ)假設甲、乙、丙3人同時進行理論與實際操作兩項考試,誰獲得“合格證書”的可能性大;
(Ⅱ)求這3人進行理論與實際操作兩項考試后,恰有2人獲得“合格證書”的概率;
(Ⅲ)用X表示甲、乙、丙3人在理論考試中合格的人數,求X的分布列和數學期望EX.

查看答案和解析>>

科目:高中數學 來源:2013-2014學年山東省高三下學期開學考試理科數學試卷(解析版) 題型:選擇題

計算機考試分理論考試與實際操作考試兩部分進行,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”者,則計算機考試“合格“并頒發(fā)”合格證書“.甲、乙、丙三人在理論考試中“合格”的概率依次為,在實際操作考試中“合格”的概率依次為,所有考試是否合格相互之間沒有影響。

1)假設甲、乙、丙3人同時進行理論與實際操作兩項考試,誰獲得“合格證書”的可能性大?

2)求這3人進行理論與實際操作兩項考試后,恰有2人獲得“合格證書”的概率;

3)用X表示甲、乙、丙3人計算機考試獲“合格證書”的人數,求X的分布列和數學期望EX。

 

查看答案和解析>>

科目:高中數學 來源:2012年北京市順義區(qū)高考數學二模試卷(理科)(解析版) 題型:解答題

計算機考試分理論考試與實際操作考試兩部分進行,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”者,則計算機考試“合格”并頒發(fā)“合格證書”.甲、乙、丙三人在理論考試中“合格”的概率依次為:、、,在實際操作考試中“合格”的概率依次為:、、,所有考試是否合格相互之間沒有影響.
(Ⅰ)假設甲、乙、丙3人同時進行理論與實際操作兩項考試,誰獲得“合格證書”的可能性大;
(Ⅱ)求這3人進行理論與實際操作兩項考試后,恰有2人獲得“合格證書”的概率;
(Ⅲ)用X表示甲、乙、丙3人在理論考試中合格的人數,求X的分布列和數學期望EX.

查看答案和解析>>

科目:高中數學 來源:2012年北京市順義區(qū)高考數學一模試卷(理科)(解析版) 題型:解答題

計算機考試分理論考試與實際操作考試兩部分進行,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”者,則計算機考試“合格”并頒發(fā)“合格證書”.甲、乙、丙三人在理論考試中“合格”的概率依次為:、、,在實際操作考試中“合格”的概率依次為:、、,所有考試是否合格相互之間沒有影響.
(Ⅰ)假設甲、乙、丙3人同時進行理論與實際操作兩項考試,誰獲得“合格證書”的可能性大;
(Ⅱ)求這3人進行理論與實際操作兩項考試后,恰有2人獲得“合格證書”的概率;
(Ⅲ)用X表示甲、乙、丙3人在理論考試中合格的人數,求X的分布列和數學期望EX.

查看答案和解析>>

同步練習冊答案