13.正項等比數(shù)列{an}滿足:a4+a3=a2+a1+8,則a6+a5的最小值是( 。
A.64B.32C.16D.8

分析 由已知求出q2=1+$\frac{8}{{a}_{1}q{+a}_{1}}$,a6+a5=${a}_{1}{q}^{5}+{a}_{1}{q}^{4}$=(a1q+a1)+$\frac{64}{{a}_{1}q+{a}_{1}}$+16,由此利用基本不等式的性質(zhì)能求出結(jié)果.

解答 解:∵{an}是正項等比數(shù)列,
∴a1>0,q>0,
∵a4+a3=a2+a1+8,
∴${a}_{1}{q}^{3}+{a}_{1}{q}^{2}={a}_{1}q+{a}_{1}+8$,
∴q2=1+$\frac{8}{{a}_{1}q{+a}_{1}}$,
∴a6+a5=${a}_{1}{q}^{5}+{a}_{1}{q}^{4}$=q2(a1q+a1+8)
=(1+$\frac{8}{{a}_{1}q+q}$)[(a1q+a1)+8]
=(a1q+a1)+$\frac{64}{{a}_{1}q+{a}_{1}}$+16
≥2$\sqrt{({a}_{1}q+{a}_{1})×\frac{64}{{a}_{1}q+{a}_{1}}}$+16=32,
當且僅當${a}_{1}q+{a}_{1}=\frac{64}{{a}_{1}q+{a}_{1}}$時,取等號.
∴a6+a5的最小值是32.
故選:B.

點評 本題考查等比數(shù)列中兩項和的最小值的求法,是基礎(chǔ)題,解題時要認真審題,注意等比數(shù)列的性質(zhì)及基本不等式性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.若棱錐的頂點可構(gòu)成共斜邊的直角三角形,則公共斜邊的中點就是其外接球的球心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知點P在圓柱OO1的底面圓O上,AB為圓O的直徑,圓柱的側(cè)面積為16π
,OA=2,∠AOP=120°.試求三棱錐A1-APB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點.
(1)證明:CD⊥平面PAE;
(2)若直線PB與平面PAE所成的角和直線PB與平面ABCD所成的角相等,求二面角P-CD-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知tanθ=2,則sin(2θ+$\frac{π}{4}}$)的值是( 。
A.$-\frac{{7\sqrt{2}}}{10}$B.$\frac{{7\sqrt{2}}}{10}$C.$-\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|(x+2)(x-3)<0},B={-1,0,1,2,3},則A∩B=(  )
A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知動點P(x,y)滿足方程xy=1(x>0).
(Ⅰ)求動點P到直線l:x+2y-$\sqrt{2}$=0距離的最小值;
(Ⅱ)設(shè)定點A(a,a),若點P,A之間的最短距離為2$\sqrt{2}$,求滿足條件的實數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=$\sqrt{2-x-{x^2}}$的定義域為A,函數(shù)g(x)=lg(x+1)的定義域為B,則A∩B=(-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,四棱錐S-ABCD是底面ABCD為等腰梯形,CD∥AB,AC⊥BD,垂足為O,側(cè)面SAD⊥底面ABCD,且∠ADS=$\frac{π}{2}$,AB=8,AD=$\sqrt{34}$,SD=$\sqrt{30}$,M為BS的中點.
(1)求證BS⊥平面AMC;
(2)求三棱錐B-CMD的體積.

查看答案和解析>>

同步練習(xí)冊答案