【題目】已知函數(shù),其定義域?yàn)?/span>.(其中常數(shù),是自然對(duì)數(shù)的底數(shù))

1)求函數(shù)的遞增區(qū)間;

2)若函數(shù)為定義域上的增函數(shù),且,證明: .

【答案】(1)見(jiàn)解析(2)見(jiàn)解析

【解析】

(1)求得函數(shù)的導(dǎo)數(shù),分類(lèi)討論,即可求解函數(shù)的單調(diào)區(qū)間;

(2)由題意,問(wèn)題轉(zhuǎn)化為,令,,

即證,根據(jù)函數(shù)的單調(diào)性,即可作出證明.

1)易知,

,由解得,函數(shù)的遞增區(qū)間為

,則

1

+

0

-

0

+

極大值

極小值

函數(shù)的遞增區(qū)間為;

③若,則,函數(shù)的遞增區(qū)間為

,則

1

+

0

-

0

+

極大值

極小值

函數(shù)的遞增區(qū)間為

綜上,若,的遞增區(qū)間為;

,的遞增區(qū)間為;

,函數(shù)的遞增區(qū)間為

,函數(shù)的遞增區(qū)間為.

2)∵函數(shù)上的增函數(shù),∴,即,

注意到,故,

不妨設(shè),

欲證,只需證,只需證

即證,即證,

,只需證,

,

下證,即證,

由熟知的不等式可知,

當(dāng)時(shí),即,

,

易知當(dāng)時(shí),,∴,

,即單調(diào)遞增,即,從而得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知無(wú)窮數(shù)列的前項(xiàng)中的最大項(xiàng)為,最小項(xiàng)為,設(shè).

1)若,求數(shù)列的通項(xiàng)公式;

2)若,求數(shù)列的前項(xiàng)和;

3)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正四面體的棱長(zhǎng)為2,是棱上一動(dòng)點(diǎn),若,則線段的長(zhǎng)度的最小值是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形與等邊所在平面互相垂直,,分別是線段的中點(diǎn).

1)求證:平面;

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)討論函數(shù)的單調(diào)性;

2)設(shè),當(dāng)時(shí),判斷是否存在使得,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱柱中,底面是正方形,且,

1)求證 ;

2)若動(dòng)點(diǎn)在棱上,試確定點(diǎn)的位置,使得直線與平面所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè)函數(shù)有兩個(gè)極值點(diǎn)),若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)接到生產(chǎn)3000臺(tái)某產(chǎn)品的三種部件的訂單,每臺(tái)產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件),已知每個(gè)工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2.該企業(yè)計(jì)劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為kk為正整數(shù)).

1)設(shè)生產(chǎn)部件的人數(shù)為,分別寫(xiě)出完成三種部件生產(chǎn)需要的時(shí)間;

2)假設(shè)這三種部件的生產(chǎn)同時(shí)開(kāi)工,試確定正整數(shù)k的值,使完成訂單任務(wù)的時(shí)間最短,并給出時(shí)間最短時(shí)具體的人數(shù)分組方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】地球的公轉(zhuǎn)軌道可以看作是以太陽(yáng)為一個(gè)焦點(diǎn)的橢圓,根據(jù)開(kāi)普勒行星運(yùn)動(dòng)第二定律,可知太陽(yáng)和地球的連線在相等的時(shí)間內(nèi)掃過(guò)相等的面積,某同學(xué)結(jié)合物理和地理知識(shí)得到以下結(jié)論:①地球到太陽(yáng)的距離取得最小值和最大值時(shí),地球分別位于圖中點(diǎn)和點(diǎn);②已知地球公轉(zhuǎn)軌道的長(zhǎng)半軸長(zhǎng)約為千米,短半軸長(zhǎng)約為千米,則該橢圓的離心率約為.因此該橢圓近似于圓形:③已知我國(guó)每逢春分(日前后)和秋分(日前后),地球會(huì)分別運(yùn)行至圖中點(diǎn)和點(diǎn),則由此可知我國(guó)每年的夏半年(春分至秋分)比冬半年(當(dāng)年秋分至次年春分)要少幾天.以上結(jié)論正確的是(

A.B.①②C.②③D.①③

查看答案和解析>>

同步練習(xí)冊(cè)答案