【題目】已知無窮數(shù)列的前項中的最大項為,最小項為,設(shè).

1)若,求數(shù)列的通項公式;

2)若,求數(shù)列的前項和;

3)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列.

【答案】1;(2,當時,;(3)證明見解析

【解析】

1)利用數(shù)列的通項公式判斷其增減性,從而確定,的表達式,進而求出數(shù)列的通項公式;

2)由計算,時,數(shù)列單調(diào)遞減,所以當時,,利用分組求和和錯位相減法求和計算即可得到答案;

3)設(shè)數(shù)列的公差為,則,討論,三種情況,分別證明數(shù)列為等差數(shù)列即可.

1)由是遞增數(shù)列,

所以,

所以.

2)由

,,即

,,即.

,

所以,當時,,

所以,

時,令,

,即.

所以

.

綜上所述,,當時,.

3)設(shè)數(shù)列的公差為,

,

由題意

,對任意都成立,

,所以是遞增數(shù)列.

所以

所以,

所以數(shù)列是公差為的等差數(shù)列;

②當時,對任意都成立,

進面,

所以是遞減數(shù)列.,

所以

所以數(shù)列是公差為的等差數(shù)列;

③當時,,

因為中至少有一個為0

所以二者都為0,進而可得數(shù)列為常數(shù)列,

綜上所述,數(shù)列為等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與橢圓交于不同的兩點,.

1)若線段的中點為,求直線的方程;

2)若的斜率為,且過橢圓的左焦點,的垂直平分線與軸交于點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線相交于兩點,點是拋物線的準線與以為直徑的圓的公共點,則下列結(jié)論正確的是(

A.B.C.D.的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示,若將函數(shù)的圖象縱坐標不變,橫坐標縮短到原來的,再向右平移個單位長度,得到函數(shù)的圖象,則下列命題正確的是( ).

A.函數(shù)的解析式為

B.函數(shù)的解析式為

C.函數(shù)圖象的一條對稱軸是直線

D.函數(shù)在區(qū)間上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,、.

1)若,且函數(shù)的圖象是函數(shù)圖象的一條切線,求實數(shù)的值;

2)若不等式對任意恒成立,求實數(shù)的取值范圍;

3)若對任意實數(shù),函數(shù)上總有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了了解一種新產(chǎn)品的銷售情況,對該產(chǎn)品100天的銷售數(shù)量做調(diào)查,統(tǒng)計數(shù)據(jù)如下圖所示:

銷售數(shù)量(件)

48

49

52

63

64

65

66

67

68

69

70

71

73

天數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

經(jīng)計算,上述樣本的平均值,標準差.

(Ⅰ)求表格中字母的值;

(Ⅱ)為評判該公司的銷售水平,用頻率近似估計概率,從上述100天的銷售業(yè)績中隨機抽取1天,記當天的銷售數(shù)量為,并根據(jù)以下不等式進行評判(表示相應(yīng)事件的概率);

;②;③.

評判規(guī)則是:若同時滿足上述三個不等式,則銷售水平為優(yōu)秀;僅滿足其中兩個,則等級為良好;若僅滿足其中一個,則等級為合格;若全部不滿足,則等級為不合格.試判斷該公司的銷售水平;

(Ⅲ)從上述100天的樣本中隨機抽取2個,記樣本數(shù)據(jù)落在內(nèi)的數(shù)量為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若處的切線的方程為,求此時的最值;

2)若對任意,,不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,橢圓的四個頂點圍成的四邊形面積為,圓經(jīng)過橢圓的短軸端點.

求橢圓的方程;

過橢圓的右焦點作互相垂直的兩條直線分別與橢圓相交于,,四點,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,以為圓心過橢圓左頂點的圓與直線相切于,且滿足

1)求橢圓的標準方程;

2)過橢圓右焦點的直線與橢圓交于不同的兩點,問內(nèi)切圓面積是否有最大值?若有,求出最大值;若沒有,說明理由.

查看答案和解析>>

同步練習(xí)冊答案