設(shè)橢圓M:的離心率為,點A、B的坐標(biāo)分別為(a,0)、(0,-b),原點O到直線AB的距離為
(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)點C為(-a,0),點P在橢圓M上(與A、C均不重合),點E在直線PC上,若直線PA的方程為y=kx-4,且,試求直線BE的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:北京市順義區(qū)2012屆高三尖子生上學(xué)期綜合素質(zhì)展示數(shù)學(xué)文科試題 題型:044
設(shè)橢圓M:的離心率為,點A(a,0),B(0,-b),原點O到直線AB的距離為.
(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)點C為(-a,0),點P在橢圓M上(與A、C均不重合),點E在直線PC上,若直線PA的方程為y=kx-4,且,試求直線BE的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃岡市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知橢圓C1:的離心率為,直線l: y-=x+2與.以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.
(1)求橢圓C1的方程;
(ll)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l2過點F價且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(III)過橢圓C1的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形, 求直線m的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省鄭州外國語學(xué)校高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年內(nèi)蒙古包頭市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com