8.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=2,a4=3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)直接由已知求出等差數(shù)列的首項(xiàng)和公差,代入等差數(shù)列的通項(xiàng)公式得答案;
(2)把(1)中的an代入bn=2${\;}^{{a}_{n}}$,可得數(shù)列{bn}是等比數(shù)列,然后利用等比數(shù)列的前n項(xiàng)和求得Tn

解答 解:(1)設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,
由a3=2,a4=3,得d=1,a1=a3-2d=2-2×1=0,
∴an=a1+(n-1)d=0+1×(n-1)=n-1;
(2)bn=2${\;}^{{a}_{n}}$=2n-1
∴$_{1}={2}^{1-1}=1$,$q=\frac{_{2}}{_{1}}=\frac{{2}^{1}}{1}=2$,
∴${T}_{n}=\frac{1×(1-{2}^{n})}{1-2}={2}^{n}-1$.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的前n項(xiàng)和,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)與函數(shù)g(x)=$\frac{2}{1-\sqrt{1-x}}$是相等的函數(shù),則函數(shù)f(x)的定義域是( 。
A.(-∞,1)B.(-∞,0)∪(0,1]C.(-∞,0)∪(0,1)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)$f(x)=\left\{\begin{array}{l}\frac{3}{x-1},x≥2\\|{{2^x}-1}|,x<2\end{array}\right.$,若方程f(x)-a=0有兩個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(  )
A.(0,1)B.(0,2)C.(0,3)D.[1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若角α=-4,則角α的終邊在第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)3,x,5成等差數(shù)列,則x為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí),有$\frac{f(a)+f(b)}{a+b}>0$成立.
(1)判斷f(x)在[-1,1]上的單調(diào)性,并證明它;
(2)解不等式f(x2)<f(2x);
(3)若f(x)≤m2-2am+1對(duì)所有的a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)$y={(2+x)^0}-\sqrt{2+x}$的定義域?yàn)椋ā 。?table class="qanwser">A.[-2,+∞)B.[-2,0)∪(0,+∞)C.(-2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)y=x2-2x+2,x∈[0,3]的值域?yàn)椋ā 。?table class="qanwser">A.[1,+∞)B.[2,+∞)C.[1,5]D.[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{{2}^{x}}{a}$+$\frac{a}{{2}^{x}}$(a>0)是偶函數(shù).
(1)求實(shí)數(shù)a的值;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并用定義證明;
(3)若不等式f(x)>b-log2|x|在[-2,-1]上恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案