【題目】已知拋物線為拋物線的焦點(diǎn),是過焦點(diǎn)的動弦,兩點(diǎn)在準(zhǔn)線上的投影,如圖所示,則下列論斷正確的個數(shù)有(

①以為直徑的圓與準(zhǔn)線一定相切;

②以為直徑的圓與直線一定相切;

③以為直徑的圓與軸一定相切;

④以為直徑的圓與軸有可能相切

A.1B.2C.3D.4

【答案】D

【解析】

設(shè),計算,得到①正確;證明,,計算得到②;計算,且軸得到③正確;假設(shè)存在,聯(lián)立方程方程有解得到④正確,得到答案.

設(shè)

①如圖1,分別是的中點(diǎn),所以,

,設(shè)以為直徑的圓的半徑為,因?yàn)?/span>,

所以,所以以為直徑的圓與準(zhǔn)線相切;

②如圖2,設(shè)以為直徑的圓的半徑為,

,,

,故,故

,的中點(diǎn),則,由①知,,又

所以,所以以為直徑的圓與直線相切;

③如圖3,設(shè)以為直徑的圓的半徑為,分別是的中點(diǎn),

,且軸,

所以以為直徑的圓與軸相切;

④假設(shè)存在以為直徑的圓與軸相切,則有,即,

,聯(lián)立得,

,故假設(shè)成立,

因此①②③④都正確,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲,乙兩種不透明充氣包裝的袋裝零食,每袋零食甲隨機(jī)附贈玩具,,中的一個,每袋零食乙從玩具,中隨機(jī)附贈一個.記事件:一次性購買袋零食甲后集齊玩具,,;事件:一次性購買袋零食乙后集齊玩具.

1)求概率,;

2)已知,其中,為常數(shù),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為正項(xiàng)數(shù)列的前項(xiàng)和,滿足.

1)求的通項(xiàng)公式;

2)若不等式對任意正整數(shù)都成立,求實(shí)數(shù)的取值范圍;

3)設(shè)(其中是自然對數(shù)的底數(shù)),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式組表示的平面區(qū)域?yàn)?/span>,若函數(shù)的圖象上存在區(qū)域內(nèi)的點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,焦點(diǎn)在軸上的橢圓與焦點(diǎn)在軸上的橢圓都過點(diǎn)中心都在坐標(biāo)原點(diǎn),且橢圓的離心率均為

求橢圓與橢圓的標(biāo)準(zhǔn)方程;

Ⅱ)過點(diǎn)M的互相垂直的兩直線分別與交于點(diǎn)A,B(點(diǎn)A、B不同于點(diǎn)M),當(dāng)的面積取最大值時,求兩直線MA,MB斜率的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,PACEAB=CEPA,PA⊥平面ABCD.

1)證明:PE⊥平面DBE

2)求二面角BPDE的正弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,二面角中,,射線,分別在平面內(nèi),點(diǎn)A在平面內(nèi)的射影恰好是點(diǎn)B,設(shè)二面角、與平面所成角、與平面所成角的大小分別為,則( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,,G的中點(diǎn),正方形與平行四邊形所在的平面互相垂直.

1)求證:平面平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lnxtx+t.

1)討論fx)的單調(diào)性;

2)當(dāng)t=2時,方程fx)=max恰有兩個不相等的實(shí)數(shù)根x1,x2,證明:.

查看答案和解析>>

同步練習(xí)冊答案