【題目】某港口水的深度是時(shí)間,單位: 的函數(shù),記作.下面是某日水深的數(shù)據(jù):
經(jīng)長(zhǎng)期觀察, 的曲線可以近似地看成函數(shù)的圖象.一般情況下,船舶航行時(shí),船底離海底的距離為或以上時(shí)認(rèn)為是安全的(船舶?繒r(shí),船底只需不碰海底即可).
(1)求與滿(mǎn)足的函數(shù)關(guān)系式;
(2)某船吃水程度(船底離水面的距離)為,如果該船希望在同一天內(nèi)安全進(jìn)出港,請(qǐng)問(wèn)它同一天內(nèi)最多能在港內(nèi)停留多少小時(shí)?(忽略進(jìn)出港所需的時(shí)間).
【答案】(1)(2)該船最早能在凌晨1時(shí)進(jìn)港,下午17時(shí)出港,在港口內(nèi)最多停留16個(gè)小時(shí)
【解析】試題分析: 通過(guò)讀取圖表,可以看出函數(shù)的周期,根據(jù)水的最大深度和最小深度聯(lián)立方程組求出,即可得到函數(shù)的近似表達(dá)式;
由題意得到該船進(jìn)出港時(shí),水深應(yīng)不小于(米),由解出一天內(nèi)水深大于等于的時(shí)間段,則船從最早滿(mǎn)足水深到達(dá)的時(shí)刻入港,從最晚滿(mǎn)足水深的時(shí)刻出港是最安全的。
解析:(1)由已知數(shù)據(jù),易知的周期,則.
再由,得振幅,
所以.
(2)由題意,該船進(jìn)出港時(shí),水深應(yīng)不小于(米),
所以,解得,
所以(),
在同一天內(nèi),取或1,所以或.
所以該船最早能在凌晨1時(shí)進(jìn)港,下午17時(shí)出港,在港口內(nèi)最多停留16個(gè)小時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣ x2﹣x+a,a∈R
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn)(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值),記為x1 , x2 , 且x1<x2 . (ⅰ)求a的取值范圍;
(ⅱ)若不等式e1+λ<x1x 恒成立,求正實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在校運(yùn)動(dòng)會(huì)上,甲、乙、丙三位同學(xué)每人均從跳遠(yuǎn),跳高,鉛球,標(biāo)槍四個(gè)項(xiàng)目中隨機(jī)選一項(xiàng)參加比賽,假設(shè)三人選項(xiàng)目時(shí)互不影響,且每人選每一個(gè)項(xiàng)目時(shí)都是等可能的
(1)求僅有兩人所選項(xiàng)目相同的概率;
(2)設(shè)X為甲、乙、丙三位同學(xué)中選跳遠(yuǎn)項(xiàng)目的人數(shù),求X的分布列和數(shù)學(xué)期望E(X)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開(kāi)辟為水果園種植桃樹(shù),已知角A為120°,AB,AC的長(zhǎng)度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP,AQ總長(zhǎng)度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,AP段圍墻造價(jià)為每平方米150元,AQ段圍墻造價(jià)為每平方米100元.若圍圍墻用了30000元,問(wèn)如何圍可使竹籬笆用料最省?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 是圓的直徑, 垂直圓所在的平面, 是圓上的點(diǎn).
(1)求證: 平面;
(2)設(shè)為的中點(diǎn), 為的重心,求證: 平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,,平面底面,.和分別是和的中點(diǎn),求證:
(Ⅰ)底面;
(Ⅱ)平面;
(Ⅲ)平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)解關(guān)于的不等式;
(2)若函數(shù)在區(qū)間上的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),求滿(mǎn)足的的集合.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com