【題目】已知函數(shù), .
(1)解關于的不等式;
(2)若函數(shù)在區(qū)間上的值域為,求實數(shù)的取值范圍;
(3)設函數(shù),求滿足的的集合.
【答案】(1) ;(2) ;(3) .
【解析】試題分析:(1)根據(jù)對數(shù)函數(shù)的單調性將原不等式化為解出即可;(2)利用定義證明在區(qū)間上為減函數(shù),可得, ,可化為是方程, 的兩個相異的解,利用數(shù)形結合思想可得結論;(3)先求出函數(shù)的值域,然后根據(jù)值域中的整數(shù)來求相應的的值,即可求出集合.
試題解析:(1)原不等式等價于,解得
故解集為.
(2)∵在上是單調遞增的,又,
設,則, ,
∴
∴,
∵,∴)
所以函數(shù)在區(qū)間上為減函數(shù),因此, .
即, ,.
所以是方程, 的兩個相異的解.
設,則
所以為所求.
(3),
∵,當且僅當時等號成立,
∴,
∵,∴有可能取得整數(shù)有且只有1,2,3,
當時,解得, ;
當時,解得;
當時,解得, .
故集合.
科目:高中數(shù)學 來源: 題型:
【題目】某港口水的深度是時間,單位: 的函數(shù),記作.下面是某日水深的數(shù)據(jù):
經長期觀察, 的曲線可以近似地看成函數(shù)的圖象.一般情況下,船舶航行時,船底離海底的距離為或以上時認為是安全的(船舶?繒r,船底只需不碰海底即可).
(1)求與滿足的函數(shù)關系式;
(2)某船吃水程度(船底離水面的距離)為,如果該船希望在同一天內安全進出港,請問它同一天內最多能在港內停留多少小時?(忽略進出港所需的時間).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為調查大學生這個微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從武漢市大學生中隨機抽取100位同學進行了抽樣調查,結果如下:
微信群數(shù)量 | 頻數(shù) | 頻率 |
0至5個 | 0 | 0 |
6至10個 | 30 | 0.3 |
11至15個 | 30 | 0.3 |
16至20個 | a | c |
20個以上 | 5 | b |
合計 | 100 | 1 |
(Ⅰ)求a,b,c的值;
(Ⅱ)以這100個人的樣本數(shù)據(jù)估計武漢市的總體數(shù)據(jù)且以頻率估計概率,若從全市大學生(數(shù)量很大)中隨機抽取3人,記X表示抽到的是微信群個數(shù)超過15個的人數(shù),求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于四面體,有以下命題:
(1)若,則過向底面作垂線,垂足為底面的外心;
(2)若, ,則過向底面作垂線,垂足為底面的內心;
(3)四面體的四個面中,最多有四個直角三角形;
(4)若四面體的6條棱長都為1,則它的內切球的表面積為.
其中正確的命題是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】命題p:關于x的不等式x2+(a﹣1)x+a2≤0的解集為;命題q:函數(shù)f(x)=(4a2+7a﹣1)x是增函數(shù),若¬p∧q為真,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=cos(2x-),x∈R.
(1)求函數(shù)f(x)的最小正周期和單調遞減區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[-, ]上的最小值和最大值,并求出取得最值時x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設[x]表示不超過x的最大整數(shù),如:[π]=3,[﹣4.3]=﹣5.給出下列命題: ①對任意實數(shù)x,都有[x]﹣x≤0;
②若x1≤x2 , 則[x1]≤[x2];
③[lg1]+[lg2]+[lg3]+…+[lg100]=90;
④若函數(shù)f(x)= ﹣ ,則y=[f(x)]+[f(﹣x)]的值域為{﹣1,0}.
其中所有真命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com