6.如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC點(diǎn),F(xiàn)棱AC上,且AF=3FC.
(1)求三棱錐D-ABC的體積;
(2)求證:AC⊥平面DEF;
(3)若M為DB中點(diǎn),N在棱AC上,且CN=$\frac{3}{8}$CA,求證:MN∥平面DEF.

分析 (1)直接利用體積公式,求三棱錐D-ABC的體積;
(2)要證AC⊥平面DEF,先證AC⊥DE,再證AC⊥EF,即可.
(3)M為BD的中點(diǎn),連CM,設(shè)CM∩DE=O,連OF,只要MN∥OF即可.

解答 (1)解:∵△BCD是正三角形,AB⊥平面BCD,AB=BC=a,
∴三棱錐D-ABC的體積V=$\frac{1}{3}×\frac{\sqrt{3}}{4}{a}^{2}×a$=$\frac{\sqrt{3}}{12}{a}^{3}$.
(2)證明:取AC的中點(diǎn)H,∵AB=BC,∴BH⊥AC.
∵AF=3FC,∴F為CH的中點(diǎn).
∵E為BC的中點(diǎn),∴EF∥BH.則EF⊥AC.
∵△BCD是正三角形,∴DE⊥BC.
∵AB⊥平面BCD,∴AB⊥DE.
∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.
∵DE∩EF=E,∴AC⊥平面DEF.
(3)解:連CM,設(shè)CM∩DE=O,連OF.
由條件知,O為△BCD的重心,CO=$\frac{2}{3}$CM.
當(dāng)CN=$\frac{3}{8}$CA時(shí),CF=$\frac{2}{3}$CN,∴MN∥OF.
∵M(jìn)N?平面DEF,OF?平面DEF,
∴MN∥平面DEF.

點(diǎn)評(píng) 本題考查棱錐的結(jié)構(gòu)特征,證明線面垂直,線面平行,考查體積的計(jì)算,考查邏輯思維能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若不等式x2+mx+n<0的解集為(-2,3),則實(shí)數(shù)m=-1,n=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求直線x-y+2=0與x2+y2=25的兩個(gè)交點(diǎn)的坐標(biāo)與它們之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在平行四邊形ABCD中,AB=2BC,∠ABC=120°.E為線段AB的中點(diǎn),將△ADE沿直線DE翻折成△A′DE,使面A′DE⊥平面BCD,F(xiàn)為線段A′C的中點(diǎn).
(Ⅰ)求證:BF∥面A′DE;
(Ⅱ)求證:CE⊥平面A′DE
(Ⅲ)若BC=2,求三棱錐A′-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.a(chǎn)是不為1的有理數(shù),我們把$\frac{1}{1-a}$稱為a的差倒數(shù),如:2的差倒數(shù)是$\frac{1}{1-2}$=-1,-2的差倒數(shù)為$\frac{1}{1-(-2)}$=$\frac{1}{3}$.已知a1=-$\frac{1}{3}$,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…,依此類推.根據(jù)你對(duì)差倒數(shù)的理解完成下面問題:
(1)a2=$\frac{3}{4}$,a3=4,a4=-$\frac{1}{3}$;
(2)通過(1)中的結(jié)果計(jì)算a2013的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱錐V-ABC中,VA=VB=VC=4,∠AVB=∠AVC=∠BVC=30°,過點(diǎn)A作截面△AEF,求△AEF周長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知三棱錐A-BCD中,點(diǎn)E,F(xiàn)分別是AB,CD的中點(diǎn)AC=BD=2,且直線AC,BD所成的角為60°,則線段EF的長度為(  )
A.1B.$\sqrt{2}$C.1或$\sqrt{2}$D.1或$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若一個(gè)三棱錐的底面是邊長為3的正三角形,高為2$\sqrt{3}$,所有側(cè)棱均相等,則側(cè)棱長為(  )
A.$\sqrt{21}$B.$\sqrt{15}$C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)m=a2+a-2,n=2a2-a-1,其中a∈R,則( 。
A.m>nB.m≥nC.m<nD.m≤n

查看答案和解析>>

同步練習(xí)冊(cè)答案