11.如圖,在三棱錐V-ABC中,VA=VB=VC=4,∠AVB=∠AVC=∠BVC=30°,過(guò)點(diǎn)A作截面△AEF,求△AEF周長(zhǎng)的最小值.

分析 沿著側(cè)棱VA把正三棱錐V-ABC展開(kāi)在一個(gè)平面內(nèi),如圖,則AA′即為△AEF周長(zhǎng)的最小值,在△VAA′k,由勾股定理能求出AA′的值.

解答 解:如圖,沿著側(cè)棱VA把正三棱錐V-ABC展開(kāi)在一個(gè)平面內(nèi),如圖(2),

則AA′即為△AEF的周長(zhǎng)的最小值,
且∠AVA′=3×30°=90°,
△VAA′中,由勾股定理得:
AA′=$\sqrt{V{A}^{2}+(V{A}^{'})^{2}}$=$\sqrt{16+16}$=4$\sqrt{2}$.

點(diǎn)評(píng) 本題考查正三棱錐中截面三角形周長(zhǎng)的最小值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意棱錐的側(cè)面展開(kāi)圖研究線(xiàn)段的最小值問(wèn)題的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.不等式-3x2<0的解集為(  )
A.B.RC.(-∞,0)∪(0,+∞)D.(-$\sqrt{3}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.與四面體的四個(gè)頂點(diǎn)距離都相等的平面共有7個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{{\sqrt{3}}}{4}$(x∈R)
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)求f(x)在區(qū)間[-$\frac{π}{4},\;\frac{π}{4}$]上的最大值和最小值并寫(xiě)出相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC點(diǎn),F(xiàn)棱AC上,且AF=3FC.
(1)求三棱錐D-ABC的體積;
(2)求證:AC⊥平面DEF;
(3)若M為DB中點(diǎn),N在棱AC上,且CN=$\frac{3}{8}$CA,求證:MN∥平面DEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\sqrt{3}$sinωx-2sin2$\frac{ωx}{2}$(ω>0)的最小正周期為3π.
(1)求函數(shù)f(x)的表達(dá)式;
(2)求函數(shù)f(x)在$({-\frac{π}{2},π})$的值域;
(3)在△ABC中,a,b,c分別為角A,B,C所對(duì)的邊,且a<b<c,$\sqrt{3}$a=2csinA,若f($\frac{3}{2}$A+$\frac{π}{2}$)=$\frac{11}{13}$,求cosB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)f(x)=sin2x+$\sqrt{3}sinxcosx-\frac{1}{2}$的最小正周期是π,當(dāng)0≤x≤$\frac{7}{24}$π時(shí),f(x)的最大值是$\frac{\sqrt{6}+\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)═ax+a-1+xlnx.
(1)求f(x)的單調(diào)區(qū)間;
(2)已知函數(shù)有極小值-e-2.若k∈Z,且f(x)-k(x-1)>0對(duì)任意x∈(1,+∞)恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.等比數(shù)列{an}中,a1=9,a5=4,則a3=6.

查看答案和解析>>

同步練習(xí)冊(cè)答案