【題目】隨著社會(huì)的進(jìn)步與發(fā)展,中國(guó)的網(wǎng)民數(shù)量急劇增加.下表是中國(guó)從年網(wǎng)民人數(shù)及互聯(lián)網(wǎng)普及率、手機(jī)網(wǎng)民人數(shù)(單位:億)及手機(jī)網(wǎng)民普及率的相關(guān)數(shù)據(jù).

年份

網(wǎng)民人數(shù)

互聯(lián)網(wǎng)普及率

手機(jī)網(wǎng)民人數(shù)

手機(jī)網(wǎng)民普及率

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

(互聯(lián)網(wǎng)普及率(網(wǎng)民人數(shù)/人口總數(shù))×100%;手機(jī)網(wǎng)民普及率(手機(jī)網(wǎng)民人數(shù)/人口總數(shù))×100%

(Ⅰ)從這十年中隨機(jī)選取一年,求該年手機(jī)網(wǎng)民人數(shù)占網(wǎng)民總?cè)藬?shù)比值超過(guò)80%的概率;

(Ⅱ)分別從網(wǎng)民人數(shù)超過(guò)6億的年份中任選兩年,記為手機(jī)網(wǎng)民普及率超過(guò)50%的年數(shù),求的分布列及數(shù)學(xué)期望;

(Ⅲ)若記年中國(guó)網(wǎng)民人數(shù)的方差為,手機(jī)網(wǎng)民人數(shù)的方差為,試判斷的大小關(guān)系.(只需寫出結(jié)論)

【答案】(Ⅰ);(Ⅱ)分布列見(jiàn)解析,;(Ⅲ)

【解析】

(Ⅰ)由表格得出手機(jī)網(wǎng)民人數(shù)占網(wǎng)民總?cè)藬?shù)比值超過(guò)的年份,由概率公式計(jì)算即可;

(Ⅱ)由表格得出的可能取值,求出對(duì)應(yīng)的概率,列出分布列,計(jì)算數(shù)學(xué)期望即可;

(Ⅲ)觀察兩組數(shù)據(jù),可以發(fā)現(xiàn)網(wǎng)民人數(shù)集中在之間的人數(shù)多于手機(jī)網(wǎng)民人數(shù),則網(wǎng)民人數(shù)比較集中,而手機(jī)網(wǎng)民人數(shù)較為分散,由此可得出.

解:(Ⅰ)設(shè)事件這十年中隨機(jī)選取一年,該年手機(jī)網(wǎng)民人數(shù)占網(wǎng)民總?cè)藬?shù)比值超過(guò)”.

由題意可知:該年手機(jī)網(wǎng)民人數(shù)占網(wǎng)民總?cè)藬?shù)比值超過(guò)80%的年份為,共6個(gè)

.

(Ⅱ)網(wǎng)民人數(shù)超過(guò)6億的年份有共六年,其中手機(jī)網(wǎng)民普及率超過(guò) 的年份有.所以的取值為.

所以, , .

隨機(jī)變量的分布列為

.

(Ⅲ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線,過(guò)拋物線焦點(diǎn)且與軸垂直的直線與拋物線相交于、兩點(diǎn),且的周長(zhǎng)為.

(1)求拋物線的方程;

(2)若直線過(guò)焦點(diǎn)且與拋物線相交于兩點(diǎn),過(guò)點(diǎn)分別作拋物線的切線、,切線相交于點(diǎn),求:的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,為梯形,,,,,.

(1)在線段上有一個(gè)動(dòng)點(diǎn),滿足平面,求實(shí)數(shù)的值;

(2)已知的交點(diǎn)為,若,且平面,求二面角平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓的離心率為,分別是橢圓的左右焦點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),且.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)在直線上是否存在點(diǎn)Q,使以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O,若存在,求出線段的長(zhǎng)的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(1)若是函數(shù)的導(dǎo)函數(shù)的零點(diǎn),求的單調(diào)區(qū)間;

(2)若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的奇函數(shù)上單調(diào)遞減,且,,則的值(  )

A. 恒為正B. 恒為負(fù)C. 恒為0D. 無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,,E為AB的中點(diǎn).將沿DE翻折,得到四棱錐.設(shè)的中點(diǎn)為M,在翻折過(guò)程中,有下列三個(gè)命題:

①總有平面;

②線段BM的長(zhǎng)為定值;

③存在某個(gè)位置,使DE與所成的角為90°.

其中正確的命題是_______.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C上的點(diǎn)到右焦點(diǎn)F的最大距離為,離心率為

求橢圓C的方程;

如圖,過(guò)點(diǎn)的動(dòng)直線l交橢圓CM,N兩點(diǎn),直線l的斜率為,A為橢圓上的一點(diǎn),直線OA的斜率為,且,B是線段OA延長(zhǎng)線上一點(diǎn),且過(guò)原點(diǎn)O作以B為圓心,以為半徑的圓B的切線,切點(diǎn)為,求取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】無(wú)窮等差數(shù)列的各項(xiàng)均為整數(shù),首項(xiàng)為、公差為,是其前項(xiàng)和,是其中的三項(xiàng),給出下列命題:

①對(duì)任意滿足條件的,存在,使得一定是數(shù)列中的一項(xiàng);

存在滿足條件的數(shù)列,使得對(duì)任意的,成立;

③對(duì)任意滿足條件的,存在,使得一定是數(shù)列中的一項(xiàng)。

其中正確命題的序號(hào)為( )

A.①②B.②③C.①③D.①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案