【題目】無(wú)窮等差數(shù)列的各項(xiàng)均為整數(shù),首項(xiàng)為、公差為,是其前項(xiàng)和,是其中的三項(xiàng),給出下列命題:

①對(duì)任意滿足條件的,存在,使得一定是數(shù)列中的一項(xiàng);

存在滿足條件的數(shù)列,使得對(duì)任意的成立;

③對(duì)任意滿足條件的,存在,使得一定是數(shù)列中的一項(xiàng)。

其中正確命題的序號(hào)為( )

A.①②B.②③C.①③D.①②③

【答案】A

【解析】

利用等差數(shù)列的公式,分別討論前項(xiàng)和的具體項(xiàng)數(shù),然后進(jìn)行推理即可,首先根據(jù)條件得出;①能被整除,且為,假設(shè)之間有項(xiàng),那么之間有項(xiàng),得出結(jié)論;

②利用等差數(shù)列的前項(xiàng)和公式化簡(jiǎn),得出結(jié)論;

不能被整除,如果,那么一定不是數(shù)列中的一項(xiàng),得出結(jié)論.

要使等差數(shù)列的公差最大,則為相鄰的前項(xiàng)和,此時(shí)對(duì)應(yīng)兩項(xiàng)為,,所以

能被整除,且,假設(shè)之間有項(xiàng),

那么之間有項(xiàng),所以一定是數(shù)列中的一項(xiàng),所以①正確;

②如果有,那么由等差數(shù)列求和公式有:,化簡(jiǎn)得到,,所以只要滿足條件的數(shù)列

就能使得對(duì)任意的,成立,所以②正確;

不能被整除,如果,那么一定不是數(shù)列中的一項(xiàng),所以③錯(cuò)誤.

綜上可得:只有①②正確.

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著社會(huì)的進(jìn)步與發(fā)展,中國(guó)的網(wǎng)民數(shù)量急劇增加.下表是中國(guó)從年網(wǎng)民人數(shù)及互聯(lián)網(wǎng)普及率、手機(jī)網(wǎng)民人數(shù)(單位:億)及手機(jī)網(wǎng)民普及率的相關(guān)數(shù)據(jù).

年份

網(wǎng)民人數(shù)

互聯(lián)網(wǎng)普及率

手機(jī)網(wǎng)民人數(shù)

手機(jī)網(wǎng)民普及率

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

(互聯(lián)網(wǎng)普及率(網(wǎng)民人數(shù)/人口總數(shù))×100%;手機(jī)網(wǎng)民普及率(手機(jī)網(wǎng)民人數(shù)/人口總數(shù))×100%

(Ⅰ)從這十年中隨機(jī)選取一年,求該年手機(jī)網(wǎng)民人數(shù)占網(wǎng)民總?cè)藬?shù)比值超過(guò)80%的概率;

(Ⅱ)分別從網(wǎng)民人數(shù)超過(guò)6億的年份中任選兩年,記為手機(jī)網(wǎng)民普及率超過(guò)50%的年數(shù),求的分布列及數(shù)學(xué)期望;

(Ⅲ)若記年中國(guó)網(wǎng)民人數(shù)的方差為,手機(jī)網(wǎng)民人數(shù)的方差為,試判斷的大小關(guān)系.(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,,,O的中點(diǎn).

1)證明:平面;

2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的圓心坐標(biāo)為,且該圓經(jīng)過(guò)點(diǎn).

1)求圓的標(biāo)準(zhǔn)方程;

2)若點(diǎn)也在圓上,且弦長(zhǎng)為8,求直線的方程;

3)直線交圓,兩點(diǎn),若直線的斜率之積為2,求證:直線過(guò)一個(gè)定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方體ABCD-A1B1C1D1中(如圖),AD=AA1=1,AB=2,點(diǎn)E是棱AB的中點(diǎn).

(1)求異面直線AD1EC所成角的大。

(2)《九章算術(shù)》中,將四個(gè)面都是直角三角形的四面體稱為鱉臑,試問(wèn)四面體D1CDE是否為鱉臑?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,底面為菱形,且,E的中點(diǎn).

(1)求證:平面平面;

(2)棱上是否存在點(diǎn)F,使得平面?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C上,過(guò)Mx軸的垂線,垂足為N,點(diǎn)P滿足.

1)求點(diǎn)P的軌跡方程;

2)設(shè)點(diǎn)在直線上,且.證明:過(guò)點(diǎn)P且垂直于OQ的直線過(guò)C的左焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于曲線,有如下結(jié)論:

①曲線C關(guān)于原點(diǎn)對(duì)稱;

②曲線C關(guān)于直線x±y=0對(duì)稱;

③曲線C是封閉圖形,且封閉圖形的面積大于2π;

④曲線C不是封閉圖形,且它與圓x2+y2=2無(wú)公共點(diǎn);

⑤曲線C與曲線4個(gè)交點(diǎn),這4點(diǎn)構(gòu)成正方形.其中所有正確結(jié)論的序號(hào)為__

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱臺(tái)ABCA1B1C1中,底面ABC是邊長(zhǎng)為2的等邊三角形,上、下底面的面積之比為14,側(cè)面A1ABB1⊥底面ABC,并且A1AA1B1,∠AA1B90°

1)平面A1C1B平面ABCl,證明:A1C1l;

2)求平面A1C1B與平面ABC所成二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案